The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally.
Design in accordance with "International Standard ISO 4126-1 Safety Valves".

Depending on version
-50°C to +450°C
0.20 bar to 40.00 bar
Steam/Gases/Liquids
Connection: Flange x Flange
DN1 x DN2: 25x32 to 400x500
Material: ▒ Carbon steel
 ▒ Stainless steel
 PN-25/40/63/100/160. PMS-62 bar
 PN-25/40/63/100/160. PMS-62 bar
Seal: ▒ Metal

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally.
Design in accordance with “International Standard ISO 4126-1 Safety Valves”.

Depending on version

-60°C to +450°C 0.20 bar to 62.00 bar Steam/Gases/Liquids

Connection: Flange x Flange
DN1 x DN2: 25x40 to 300x400
Material: ▒ Carbon steel
 ▒ Stainless steel
 PN-25/40/63/100/160. PMS-95 bar
 PN-25/40/63/100/160. PMS-95 bar
Seal: ▒ Metal

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally.
Design in accordance with “International Standard ISO 4126-1 Safety Valves”.

Depending on version

-60°C to +450°C 0.20 bar to 95.00 bar Steam/Gases/Liquids
Full lift safety valve with spring loading. (AIT)

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally.

Design in accordance with "International Standard ISO 4126-1 Safety Valves".

Depending on version

-60°C to +200°C
0.20 bar to 36.00 bar
Steam/Gases/Liquids
The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally. Design in accordance with “International Standard ISO 4126-1 Safety Valves”.

Connection: Male thread x Female thread
MR1 x FR2: 3/8”x1/2” and 1/2”x1/2”
Material: Stainless steel. PN-160
Seal: PTFE (Teflon)

Depending on version

-60°C to +200°C
36.01 bar to 144.00 bar
Gases

Material:
- Stainless steel. PN-16
- PTFE (Teflon)
- Silicone’s rubber
- Fluoroelastomer (Viton)
- Perfluoroelastomer (FFKM)

Steam/Gases/Liquids

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally. Design in accordance with “ASME code section VIII Div.1”. Materials according ASME code section II and ASTM. Connections according ISO 2852 standard.

Connection: Flange clamp x Flange clamp
DN1 x DN2: 10 x15 to 25 x 25
Material: Stainless steel. PN-16
Seal: PTFE (Teflon)

Depending on version

-60°C to +200°C
0.20 bar to 16.00 bar
Steam/Gases/Liquids

Material:
- Stainless steel. PN-16
- PTFE (Teflon)
- Silicone’s rubber
- Fluoroelastomer (Viton)
- Perfluoroelastomer (FFKM)
Safety

EN

Normal safety valve with spring loading. (AN)

Mod. 494

Connection: Flange x Flange
DN1 x DN2: 25x25 to 200x200
Material:
- Cast iron, PN-16
- Nodular iron, PN-40; 350°C
- Cast steel, PN-40
- Stainless steel, PN-40

Metal

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open, at the first proportional to the pressure increase, and after instantly and totally.

Design in accordance with "International Standard ISO 4126 -1 Safety Valves".

Depending on version

-60°C to +450°C
0.20 bar to 40.00 bar
Steam/Gases/Liquids

Mod. 295

Connection: Male thread x Female thread
MR1 x FR2: 1/2”x1” to 1 1/4” x 2”
Material:
- Bronze, PMS-25 bar
- Carbon steel, PMS-25 bar
- Stainless steel, PMS-25 bar
- PTFE (Teflon)
- Silicone’s rubber
- Fluoroelastomer (Viton)

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open, at the first proportional to the pressure increase, and after instantly and totally.

Design in accordance with "International Standard ISO 4126 -1 Safety Valves".

Depending on version

-60°C to +250°C
0.20 bar to 25.00 bar
Steam/Gases/Liquids
Proportional safety valve with spring loading. (AP)

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open, at the first proportional to the pressure increase, and after instantly and totally.

Design in accordance with “International Standard ISO 4126 -1 Safety Valves”.

Connection: Flange x Flange
DN1 x DN2: 15x25 to 32x50
Material: ▢ Bronze. PMS-25 bar
 ▢ Carbon steel. PMS-25 bar
 ▢ Stainless steel. PMS-25 bar
Seal: ▢ PTFE (Teflon)
 ▢ Silicone’s rubber
 ▢ Fluoroelastomer (Viton)

Depending on version
-60°C to +250°C 0,20 bar to 25,00 bar Steam/Gases/Liquids

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open proportional to the pressure increase.

Design in accordance with “International Standard ISO 4126-1 Safety Valves”.

Connection: Male thread x Female thread
MR1 x FR2: 1/4”x1/4” to 4”x4”
Material: ▢ Bronze/Brass. PN-16
 ▢ Mixed (Bronze/Brass - S. steel). PN-25
 ▢ PTFE (Teflon)
 ▢ Silicone’s rubber
 ▢ Fluoroelastomer (Viton)

Seal: ▢ Stainless steel. PN-25
 ▢ PTFE (Teflon)
 ▢ Silicone’s rubber
 ▢ Fluoroelastomer (Viton)

Depending on version
-60°C to +250°C 0,20 bar to 25,00 bar Steam/Gases/Liquids

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open proportional to the pressure increase.

Design in accordance with “International Standard ISO 4126-1 Safety Valves”.

Connection: Flange x Female thread
DN1 x FR2: 8x1/4” to 100x4”
Material: ▢ Bronze/Brass. PN-16
 ▢ Mixed (Bronze/Brass - S. steel). PN-25
 ▢ PTFE (Teflon)
 ▢ Silicone’s rubber
 ▢ Fluoroelastomer (Viton)

Seal: ▢ Stainless steel. PN-25
 ▢ PTFE (Teflon)
 ▢ Silicone’s rubber
 ▢ Fluoroelastomer (Viton)

Depending on version
-60°C to +250°C 0,20 bar to 25,00 bar Steam/Gases/Liquids
Vacuum breaker safety valve

Mod. 795

- **Connection:** Male thread x Free admission
- **Material:**
 - Brass. PN-16
 - Stainless steel. PN-16
- **Seal:**
 - Silicone’s rubber
 - Fluoroelastomer (Viton)
- **Temp. Range:**
 - -50°C a +150°C
- **Pressure Range:**
 - -0.05 bar a -0.40 bar
- **介质:** Gases

The valve acts as an automatic regulator of pressure drops and prevents the creation of a vacuum inside pressurized installations or vessels.

Depending on version

- Liquid
- 5°F to 131°F
- 0.05 bar to 0.40 bar

Full lift safety valve with spring loading. (AIT)

Mod. 486

- **Connection:** Flange x Flange
- **Material:**
 - Carbon steel, 150 lbs and 300 lbs
 - Stainless steel, 150 lbs and 300 lbs
- **Seal:**
 - Metal
- **Temp. Range:**
 - -20.2°F to +842°F
- **Pressure Range:**
 - 2,990 psi to 58,015 psi
- **介质:** Steam/Gases/Liquids

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally.

Design in accordance with “ASME code section VIII Div.1”.

Materials according ASME code section II and ASTM.

Connections according ASME/ANSI B16.5 standard.

Center to face dimensions according API-526.

Depending on version

- Liquid
- 5°F to 131°F
- 0.05 bar to 0.40 bar
The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally.

Design in accordance with “ASME code section VIII Div.1”.

Materials according ASME code section II and ASTM. Connections according ASME B1.20.1 standard.

Connection: Rosca hembra NPT x Rosca hembra NPT
FNPT1 x FNPT2: 3/4”x1 1/4” and 1”x1 1/2”
Material: Carbon steel. 300 lbs
Stainless steel. 300 lbs
Seal: Metal

Depending on version

-20.2°F to +842°F
2.90 psi to 580.15 psi
Steam/Gases/Liquids

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally.

Design in accordance with “ASME code section VIII Div.1”.

Materials according ASME code section II and ASTM. Connections according ASME B1.20.1 standard.

Connection: Male thread NPT x Female thread NPT
MNPT1 x FNPT2: 3/8”x1/2” to 1”x1”
Material: Bronze. PMS-522,14 psi
Stainless steel. 300 lbs
PTFE (Teflon)
Silicone’s rubber
Fluoroelastomer (Viton)
Perfluoroelastomer (FFKM)

Depending on version

-76°F to +392°F
2.90 psi to 522.14 psi
Steam/Gases/Liquids
The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally.

Design in accordance with “ASME code section VIII Div.1”.

Materials according ASME code section II and ASTM. Connections according ASME B1.20.1 standard.

Connection: Male thread NPT x Female thread NPT
MNPT1 x FNPT2: 3/8"x1/2" to 1"x1"
Material:
- Bronze. PMS-522,14 psi
- Stainless steel. 300 lbs
Seal:
- PTFE (Teflon)

Depending on version

-320,8ºF to +392ºF
2,90 psi to 522,14 psi
Steam/Gases/Liquids

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally.

Design in accordance with “ASME code section VIII Div.1”.

Materials according ASME code section II and ASTM. Connections according ASME B1.20.1 standard.

Connection: Male thread NPT x
Female thread NPT
MNPT1 x FNPT2: 3/8”x1/2” and 1/2”x1/2”
Material:
- Stainless steel. 900 lbs
Seal:
- PTFE (Teflon)

Depending on version

-76ºF to +392ºF
523,58 psi to 2,088,57 psi
Gases
Vacuum breaker safety valve

Depending on version
-58ºF to +302ºF
-0.73 psi to -5.80 psi
Gases

The valve acts as an automatic regulator of pressure drops and prevents the creation of a vacuum inside pressurised installations or vessels.

Mod. 785

Connection: Male thread NPT x Free admission
MNPT1 x 6ØB: 3/8”x6ØB to 1”x6ØB
Material: Brass. 150 lbs
Stainless steel. 150 lbs
Silicone’s rubber
Fluoroelastomer (Viton)

Mod. 005 EN ASME/ANSI ASME/FNPT ASME/MNPT ASME/SW …...others to be agreed

Connection: Flange
Male thread GAS
Female thread GAS
Male thread NPT
Female thread NPT
SW welding end
DN: To be agreed
R: To be agreed
Material: Carbon steel

During the expansion process for compressible substances such as gases, steam or air, one of the main problems is noise pollution. The noise is caused by opening the valve and discharging the expanded fluid at the speed of sound. Silencers are a great way to reduce this noise, caused by discharging the valve, bringing it down to allowable levels.

They are used in places such as power, chemical and petrochemical plants to discharge safety valves, control valves, etc. in pressure lines and equipment that convey compressible substances such as steam, air, carbon dioxide, helium, methane, nitrogen, oxygen and other gases.

They achieve noise reductions of more than 50 dB without any additional acoustic absorption materials.

Depending on version
±540ºC
To be agreed
Steam/Gases

Multi-stage diffusion silencers
Controlled safety pressure relief system CSPRS valves are mainly used where conventional direct-loaded spring action valves cannot guarantee the opening and closing margins that certain specific conditions of service demand.

The objective is to help the closure by means of pressure so that the valve remains completely watertight until reaching the set pressure and/or to activate the opening with pressure. Once evacuated and in keeping with a previous adjustment, to assist with closing pressure, to once again achieve closure with the desired watertightness.

This allows us to:
- Stabilise the functioning in critical applications of one or several valves.
- Improve performance, position, repeatability and operational efficiency.
- Improve the opening-closure hysteresis.
- Reduce product losses and minimise them in the case of working with several valves at staggered pressures, if conditions so permit.
- Increase the operating pressure of the system up to 99.9% of the set pressure.

The control safety pressure relief system CSPRS device can be used with any safety valve available in the market.
Check-Filters

Disc check valve

Mod. 170 EN ASME/ANSI

- Connection: For placing between flanges DN: 15 to 100
- Material: Bronze, PN-16, Cast steel, PN-40, Stainless steel, PN-40
- Seal: Metal
- Disc check valve with centering ring for placing between flanges in accordance with DIN, UNE, ANSI, BS, etc. DN -15 to 100.
- Face-to-face dimensions in accordance with EN-558, basic series 49.
- Depending on version
 - -60°C to +400°C
 - 40,00 bar
 - Steam/Gases/Liquids

Mod. 172 EN ASME/ANSI

- Connection: For placing between flanges DN: 125 to 300
- Material: Cast iron, PN-16, Bronze, PN-16, Cast steel, PN-40, Stainless steel, PN-40
- Seal: Metal
- Disc check valve with centering ring for placing between flanges in accordance with DIN, UNE, ANSI, BS, etc. DN -125 to 300.
- Face-to-face dimensions in accordance with EN-558, basic series 49 and 51.
- Depending on version
 - -60°C to +400°C
 - 40,00 bar
 - Steam/Gases/Liquids
Check-Filters

Mod. 179 EN ASME/FNPT ASME/SW

Connection:
- Female thread GAS
- Female thread NPT
- Socket welding ends SW
- 1/4” to 2”

Material:
- Brass, PN-200
- Cast steel, PN-250
- Stainless steel, PN-250
- Metal

Seal:
- Check valve with spring operated piston closure.

According to version
- -60°C to +400°C
- 250.00 bar
- Steam/Gases/Liquids

Mod. 090 EN ASME/ANSI

Connection: Flange x Flange
- DN: 15 to 300
- Material:
 - Nodular iron, PN-16
 - Carbon steel, PN-40
 - Stainless steel, PN-40

It enables the filtration and accumulation of suspended solid particles, dragged by fluids, for their subsequent removal. In this way, we protect water control and regulation equipment underneath the filter and prevent collateral damage.

Depending on version
- -60°C to +400°C
- 40.00 bar
- Steam/Gases/Liquids
Steam traps

Thermodynamícan
Thermodynamic steam trap

Mod. 191 EN ASME/FNPT
ASME/SW ASME/ANSI

Connection:
- Female thread GAS
- Female thread NPT
- Socket welding ends SW
R: 1/4” to 2”
Material: Stainless steel. PN-40

It enables the filtration and accumulation of suspended solid particles, dragged by fluids, for their subsequent removal. In this way, we protect water control and regulation equipment underneath the filter and prevent collateral damage.

Depending on version

-20ºC to +180ºC
40,00 bar
Steam/Gases/Liquids

Mod. 041 EN ASME/FNPT ASME/SW

Mod. 043 EN ASME/FNPT ASME/SW

Mod. 042 EN ASME/ANSI

Mod. 044 EN ASME/ANSI

041-042 without filter
043-044 with filter

For the extraction of steam condensates.

For use in: steam piping, irons, laundries, tanks and vessels with condensate discharge, multiple plate presses, vulcanizing autoclaves, pressure reduction equipment, etc.

Depending on version

-400ºC
0,20 bar to 42,00 bar
Steam/Gases/Liquids
Steam traps

Mechanical

Float and thermostatic steam trap

Inverted bucket steam trap

Mod. 241 EN ASME/FNPT

- **Connection:** Female thread GAS, Female thread NPT
- **Material:** Cast iron. PN-16 bar
- **Seal:** Metal

Mod. 243 EN ASME/FNPT ASME/SW

- **Connection:** Female thread GAS, Female thread NPT
- **Material:** Cast steel. PMS-14 bar
- **Seal:** Metal

Mod. 244 EN ASME/ANSI

- **Connection:** Flange x Flange
- **Material:** Cast steel. PMS-14 bar
- **Seal:** Metal

To extract saturated or super-heated medium or low-pressure steam condensates.
Applicable to: steam piping, heat exchangers, plants with automatic temperature control, etc., in the chemical and petrochemical industries, etc.

To extract saturated or super-heated low-pressure steam condensates.
Applicable to: steam piping, heat exchangers, plants with automatic temperature control, etc., in the chemical and petrochemical industries, etc.
For the extraction of steam condensates.
Applicable in: steam piping, heat exchangers, chemical and petrochemical industries,… etc.

Depending on version

Mod. 143 EN ASME/FNPT ASME/SW

Connection:
Female thread GAS
Female thread NPT
Socket welding ends SW
R: BP 1/2” and 3/4”
MP 1/2” and 3/4”
AP 1/2” to 1”

Material:
Cast steel. BP. PN-40
Cast steel. MP. PN-40
Cast steel. AP. PN-100

Seal: Metal

Mod. 144 EN ASME/ANSI

Connection:
Flange x Flange
DN: BP 15 to 25
MP 15 to 25
AP 15 to 25

Material:
Cast steel. BP. PN-40
Cast steel. MP. PN-40
Cast steel. AP. PN-100

Seal: Metal

To extract saturated or super-heated medium or low-pressure steam condensates.
Applicable to: steam piping, irons, laundries, vessels with condensate discharge, cooking pots, sterilizers, heat exchangers, multiple dish presses, vulcanizing autoclaves, calenders, pressure reducing equipment, etc.

Depending on version

Mod. 443 EN ASME/FNPT ASME/SW

Connection:
Female thread GAS
Female thread NPT
Socket welding ends SW
R: 1/4” to 1”

Material:
Stainless steel. PMS-22 bar

Seal: Metal

Mod. 444 EN ASME/ANSI

Connection:
For placing between flanges
DN: 15 to 25

Material:
Stainless steel. PMS-22 bar

Seal: Metal

Mod. 543 EN ASME/FNPT

Connection:
Female thread GAS
Female thread NPT
R: 1/2”

Material:
Stainless steel. PMS-22 bar

Seal: Metal
Reducing-Mixing Connection:

- Female thread GAS
- Female thread NPT
- Material: Nodular iron. PN-25
- Connection: Flange x Flange
- DN: 1/2” to 1”
- Material: Cast steel. PN-40
- Stainless steel. PN-40
- Seal: Metal

For steam and gases. (For liquids, consult our technical department).

Suitable for application in: ironing machines, laundries and dry cleaners, cooking vats, textile machinery, drying cylinders, autoclaves, steam ovens, distilleries, heat exchangers, the food industry, chemical laboratories, etc.

Depending on version:

- Temperature: -60 to +230ºC
- Steam/Gases/Liquids

Steam traps

Ultrasonic leak detector

To detect leaks:
- In condensate purgers.
- In valve seals.

Checking for wear on bearings.
Solving mechanical problems in general.
Ultrasound is directional and localisable. In a noisy environment we can remove or block the distorting ultrasounds.
During preventive maintenance, we should place the stethoscope properly and we will detect, audibly and visually, the leaks that are affecting us. We can take corrective action, safeguarding the environment, saving energy, time and consequently money.

It meets and exceeds the requirements of ASTM E1002-2005 for Leak Detection.

Depending on version:

- Temperature: -60 to +230ºC
- Steam/Gases/Liquids

Direct action pressure reducing valve

Mod. 003

Material: ABS plastic - Stainless steel

Mod. 513 EN ASME/FNPT

Connection: Female thread GAS
- Female thread NPT
- R: 1/2” to 1”
- Material: Nodular iron. PN-25
- Cast steel. PN-40
- Stainless steel. PN-40
- Seal: Metal

Mod. 514 EN ASME/ANSI

Connection: Flange x Flange
- DN: 15 to 25
- Material: Nodular iron. PN-25
- Cast steel. PN-40
- Stainless steel. PN-40
- Seal: Metal

For steam and gases. (For liquids, consult our technical department).

Suitable for application in: ironing machines, laundries and dry cleaners, cooking vats, textile machinery, drying cylinders, autoclaves, steam ovens, distilleries, heat exchangers, the food industry, chemical laboratories, etc.

Depending on version:

- Temperature: 0ºC +220ºC
- Steam/Gases/Liquids

- Pressure: 1.40 to 17.00 bar
- Sg and Sg/solid liquids
Steam-water mixing valve

Mod. 253 EN ASME/FNPT

Connection: Female thread
R: 1/2", 3/4, 1" and 1 1/2"
Material: Bronze. PN-16
Seal: PTFE (Teflon)

Depending on version

-187°C
0.35 to 10.50 bar
Steam

Watergun Pl. 1

Connection: Female thread
R: 1/2"
Material: Bronze (covered with synthetic rubber)
Seal: Fluoroelastomer (Viton)

In installations with steam, the steam can be mixed with cold water to obtain instant hot water in the most economical way.
Can be used in packaging plants, dairies, detergent plants, slaughterhouses, meat processing plants, hospitals,... etc.
For cleaning floors, vehicles, toilets, tanks, filters,... etc.
In the manufacture of food, chemical, paper and tannery products,... etc.

Depending on version

+82°C
28.00 bar
Liquids
Float-Buoys

Mod. 150 EN ASME/ANSI
- **Connection:** Flange, Male thread GAS, Male thread NPT
- **Material:** Stainless steel, PN-16
- **Seal:** Silicone’s rubber
- **Material:** Stainless steel
- **Flat:** Ø150x60, Ø150x60, Ø200x80 & Ø250x95, Ø300x115 & Ø350x130
- **Seal:** Silicone’s rubber
- **Cylindrical:** Ø40x50, Ø40x50, Ø60x120, Ø60x120
- **Spherical:** Ø60, Ø60, Ø90, Ø105, Ø110 & Ø150, Ø200 & Ø300

Mod. 151 EN ASME/MNPT
- **Connection:** Male thread GAS, Male thread NPT
- **Material:** Stainless steel, PN-16
- **Seal:** Silicone’s rubber
- **Material:** Stainless steel
- **Flat:** Ø150x60, Female thread. M10
- **Seal:** Silicone’s rubber
- **Cylindrical:** Ø40x50, Ø40x50, Ø60x120, Ø60x120
- **Spherical:** Ø60, Ø60, Ø90, Ø105, Ø110 & Ø150, Ø200 & Ø300

To control the level of liquids in tanks, deposits, etc.

Depending on version

-60°C to +200°C
- 16 bar
- Dowels

Liquids
Stop valve with bellow seals

- Connection: Flange x Flange
- DN: 15 to 25
- Material:
 - Nodular iron. PN-16
 - Carbon steel. PN-40
 - Stainless steel. PN-40
- Seal: Metal

Stop valve with bellow seals, maintenance-free, designed with external spindle and support guide, thus avoiding the atmospheric emissions of conventional valves.

Depending on version:
- -40 to +400°C
- 40.00 bar
- Steam/Gases/Liquids

Thermal and acoustic insulation textile jackets

- Connection: VYC thermal and acoustic insulation textile jackets are designed and manufactured to measure for our valves, but we are able to adjust them to any other valve or installation on the market. Remember that only our original products will offer the maximum guarantee.

- Material: Fibreglass with external silicone coating

They help to reduce heat loss, protect against frost and adverse weather conditions, noise attenuation and work as a preventive measure in work-place safety, etc.

Depending on version:
- +500°C
- Steam/Gases/Liquids
Mod. 011 EN ASME/MNPT

Connection: Male thread GAS
Male thread NPT
R: 1/4" to 1/2"
Material:
- Cast steel. B40
- Stainless steel. CL300

Sleeve and nuts

Connection: Female thread GAS
Female thread NPT
R: 1/4" to 1/2"
Material:
- Brass
- Stainless steel

Prevents breakdowns and misalignments in pressure gauges.
Absorbs abrupt pressure changes or water hammer which cause malfunctioning pressure gauges.
Isolates the pressure gauge from extreme temperatures by creating thermal isolation space.
If working with steam, ensure that the pressure gauge is activated by water condensation and not by steam.

Depending on version
-60°C to +400°C
51.70 bar
Steam/Gases/Liquids

Mod. 147 EN ASME/FNPT ASME/SW

Connection: Female thread GAS
Female thread NPT
Socket welding ends SW
R: 1/4" to 2"
Material:
- Brass. PN-200
- Cast steel. PN-250
- Stainless steel. PN-250
Seal: Metal

For liquids, gases and steam.
For use in hydraulic, pneumatic, heating and steam systems, chemical and food industries, etc.

Depending on version
-60°C +400°C
250,00 bar
Steam/Gases/Liquids
Bleeding for steam boilers

The water in the boiler contains salts, which are built up by the continuous evaporation. If these salts are not eliminated, bubbles and foam are formed when the density of the water increased.

To prevent these lime deposits forming, the water supply must be suitably treated, with the result that certain salts are changed producing impurities which form sludge and encrusted deposits which then adhere to the sides or the bottom of the boiler and to the combustion tubes, together with particles of dirt, remains of electrodes, carbonic acid, oxygen, etc. This leads to a high level of rust which may:

- Destroy the metal plate of the boiler, causing high maintenance costs.
- Produce thermic voltages, causing cracks in the metal plate and soldering cord.
- Notably slow down thermic transmission, meaning an unnecessary and excessive consumption of fuel.

Depending on version

\[+250^\circ C\]

40,00 bar

Steam/Liquids

Bleed valve for bleeding dirt and sludge

For steam boilers

The water in the boiler contains salts, which are built up by the continuous evaporation. If these salts are not eliminated, bubbles and foam are formed when the density of the water increased.

To prevent these lime deposits forming, the water supply must be suitably treated, with the result that certain salts are changed producing impurities which form sludge and encrusted deposits which then adhere to the sides or the bottom of the boiler and to the combustion tubes, together with particles of dirt, remains of electrodes, carbonic acid, oxygen, etc. This leads to a high level of rust which may:

- Destroy the metal plate of the boiler, causing high maintenance costs.
- Produce thermic voltages, causing cracks in the metal plate and soldering cord.
- Notably slow down thermic transmission, meaning an unnecessary and excessive consumption of fuel.

Depending on version

\[+250^\circ C\]

40,00 bar

Steam/Liquids

The continuous desalting valve is used to empty an adjustable quantity of water from the steam boiler, removing:

- Organic matter and mineral salts in solution. (Calcium, magnesium, sodium, potassium, iron, bicarbonate ions, chlorides, sulphates, nitrates, ...etc.).
- Solid materials in suspension. (Sand, clay, metal residues, rock residues, organic matter, ...etc.).

The continuous bleeding process prevents:
- Damage caused by erosion and perforation, entailing the following high costs:
 - Direct: Replacement or repair of materials.
 - Indirect: Stoppages, product losses, ...etc.
- Danger of boiler explosion.
- Notably slow down thermic transmission, meaning an unnecessary and excessive consumption of fuel.

And reduces:
- Incrustations and sediments caused by precipitation of calcium and magnesium salts, which obstruct thermic transmission and which cause unnecessary and excessive fuel consumption.
- Foam formation caused by excessive saline concentration, with its corresponding drag.

depending on version

Mod. 260-A EN

Connection: Flange x Flange
DN: 20 to 50
Material: Cast steel, PN-40
Seal: Metal

Programmable control for automatic bleeding of dirt and sludge. MP-1 and MP-2

Connection: Air inlet 1/8”
Control and discharge tube Ø6/4 mm.
Voltage: 220 V.A.C. ±10% 50/60 Hz.

The water in the boiler contains salts, which are built up by the continuous evaporation. If these salts are not eliminated, bubbles and foam are formed when the density of the water increased.

To prevent these lime deposits forming, the water supply must be suitably treated, with the result that certain salts are changed producing impurities which form sludge and encrusted deposits which then adhere to the sides or the bottom of the boiler and to the combustion tubes, together with particles of dirt, remains of electrodes, carbonic acid, oxygen, etc. This leads to a high level of rust which may:
- Destroy the metal plate of the boiler, causing high maintenance costs.
- Produce thermic voltages, causing cracks in the metal plate and soldering cord.
- Notably slow down thermic transmission, meaning an unnecessary and excessive consumption of fuel.

depending on version

Mod. 560 EN ASME/ANSI

Connection: Flange x Flange
DN: 15 to 25
Material: Cast steel. PN-40
Seal: Metal

The continuous desalting valve is used to empty an adjustable quantity of water from the steam boiler, removing:

- Organic matter and mineral salts in solution. (Calcium, magnesium, sodium, potassium, iron, bicarbonate ions, chlorides, sulphates, nitrates, ...etc.).
- Solid materials in suspension. (Sand, clay, metal residues, rock residues, organic matter, ...etc.).

The continuous bleeding process prevents:
- Damage caused by erosion and perforation, entailing the following high costs:
 - Direct: Replacement or repair of materials.
 - Indirect: Stoppages, product losses, ...etc.
- Danger of boiler explosion.
- Notably slow down thermic transmission, meaning an unnecessary and excessive consumption of fuel.
- Incrustations and sediments caused by precipitation of calcium and magnesium salts, which obstruct thermic transmission and which cause unnecessary and excessive fuel consumption.
- Foam formation caused by excessive saline concentration, with its corresponding drag.

depending on version
Automatic continuous desalting valve

For steam boilers

Mod.560-A EN ASME/ANSI

- **Connection:** Flanges x Flange
- **DN:** 15 to 25
- **Material:** Cast steel. PN-40
- **Seal:** Metal
- **Servomotor voltage:** 220 V.A.C. ±10% 50/60 Hz.
- **Desalting controller**
 - With assembly cupboard. ARD-1
 - Without assembly cupboard. RD-1
- **Voltage:** 220 V.A.C. ±10% 50/60 Hz.

Conductivity electrode EC-1

- **Connection:** Male thread
- **R:** 1"
- **Material:** PTFE (Teflon)-Stainless steel. PMS-32 bar

Electrode connection collector

- **Connection:** Flange
- **DN:** 20
- **Material:** Cast steel. PN-40
- **Blowoff valve:** Mod. 999 de 1/2" with simple joint plug

The conductivity electrode EC-1, the desalting controller RD-1 and the continuous desalting valve with servomotor allow the automatic desalting process of boiler water which eliminates:
- Organic matter and mineral salts in solution. (Calcium, magnesium, potassium, iron, bicarbonate ions, chlorides, sulphates, nitrates, etc.).
- Solid materials in suspension. (Sand, clay, metal residues, rock residues, organic matter, etc.).

The continuous bleeding process prevents:
- Damage caused by erosion and perforation, entailing the following high costs:
 - Direct: Replacement or repair of materials.
 - Indirect: Stoppages, product losses, etc.
- Danger of boiler explosion.
And reduces:
- Incrustations and sediments caused by precipitation of calcium and magnesium salts, which obstruct thermic transmission and which cause unnecessary and excessive fuel consumption.
- Foam formation caused by excessive saline concentration, with its corresponding drag.
- This combination of measuring, comparison and control ensures minimum water loss and thus gives considerable energy savings.

Samples water-cooler

For steam boilers

Mod.560 DRM-1 EN ASME/FNPT

- **Connection:** Sampling circuit: Tube Ø6/8mm.
- **Refrigeration circuit:** Female thread 1/2"
- **Material:** Stainless steel.
- **Sampling circuit:** PMS-140 bar
- **Refrigeration circuit:** PMS-10 bar

Efficient monitoring of the purging of salts, dirt and sludge in a steam boiler requires regular analysis of the water in order to verify that its parameters are within the ideal levels of salinity and alkalinity demanded by law. All the Continuous desalting valve (Mod. 560 and 560-A) are provided with taps for obtaining samples. As the water is extracted continuously 30 ÷ 50 mm. below the minimum level, the collection level is ideal and does not interfere with the control and level regulation devices. Direct sampling is incorrect:
- Losses by expansion increase the density of the water and falsify results.
- There is an obvious physical risk involved.

The basic premise for conducting analyses correctly is to bring the samples from the tap of the Continuous desalting valve to the Samples water-cooled DRM-1, and bring them down to between 24 ÷ 26°C.
This device guarantees automatic, safe and reliable control, regulation and signalling of the level of liquids in: steam boilers, pressurised vessels, preheaters, processes, etc.

Depending on version

-60°C to +150°C 30.00 bar
-60°C to +300°C 16.00 bar

Mod. 262 EN/ASME

Connection: M.4
Voltage: 220 V.A.C

To be meant for Mod. 290, 291 and 076
This device guarantees a safe and reliable control, regulation and electronic signalling of the level of electrically conducting liquids in: steam and hot water boilers, autoclaves, pre-heaters, pressure vessels, feedwater and condensates tanks, processes, etc.

Depending on version

\[+238 \text{ºC} \]

\[32 \text{,00 bar} \]

\[\text{Steam/Liquids} \]
For visual checking of the level of liquids in all types of vessel, including those under pressure, in special thermal and chemical conditions. Also for checking processes. The quality of the sight glass satisfies the most demanding safety standards and industry guarantees in general.

To verify the flow, direction and condition of liquid in a section of piping. It helps detect blockages in valves, filters and other line equipment. In particular, it enables verification of correct operation of the condensate traps, ensuring that there are no steam leaks, with the cost this would entail. It also enables observation of a product’s viscosity, turbidity and, in particular, its colour in the different phases of its production process.

Applicable to: piping conveying liquids, steam and condensates, among others, in any type of industry: chemical, petrochemical, pharmaceutical, food and more.

Mod. 265 EN ASME/FNPT ASME/SW

<table>
<thead>
<tr>
<th>Type</th>
<th>45x10</th>
<th>63x10</th>
<th>63x15</th>
<th>80x12</th>
<th>80x20</th>
<th>100x15</th>
<th>100x25</th>
<th>125x20</th>
<th>125x30</th>
<th>150x25</th>
<th>150x30</th>
<th>175x25</th>
<th>175x30</th>
<th>200x30</th>
<th>250x30</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>1/2” to 1”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/2” to 2”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Cast steel. PN-40</td>
<td>Stainless steel. PN-40</td>
<td>Cast steel. PN-40</td>
<td>Stainless steel. PN-40</td>
<td></td>
</tr>
</tbody>
</table>

Mod. 365 EN ASME/FNPT ASME/SW

<table>
<thead>
<tr>
<th>Type</th>
<th>45x10</th>
<th>63x10</th>
<th>63x15</th>
<th>80x12</th>
<th>80x20</th>
<th>100x15</th>
<th>100x25</th>
<th>125x20</th>
<th>125x30</th>
<th>150x25</th>
<th>150x30</th>
<th>175x25</th>
<th>175x30</th>
<th>200x30</th>
<th>250x30</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>1/2” to 1”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/2” to 2”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Cast steel. PN-40</td>
<td>Stainless steel. PN-40</td>
<td>Cast steel. PN-40</td>
<td>Stainless steel. PN-40</td>
<td></td>
</tr>
</tbody>
</table>

Mod. 366 EN ASME/ANSI

<table>
<thead>
<tr>
<th>Type</th>
<th>45x10</th>
<th>63x10</th>
<th>63x15</th>
<th>80x12</th>
<th>80x20</th>
<th>100x15</th>
<th>100x25</th>
<th>125x20</th>
<th>125x30</th>
<th>150x25</th>
<th>150x30</th>
<th>175x25</th>
<th>175x30</th>
<th>200x30</th>
<th>250x30</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN</td>
<td>15 to 200</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Cast steel. PN-16. PN-40</td>
<td>Stainless steel. PN-40</td>
<td></td>
</tr>
</tbody>
</table>

Depending on version

-60°C to +280°C
40.00 bar
Steam/Gases/Liquids

Mod. 006

Material: Borosilicate Graphite (Joints)

Depending on version

+300°C
40.00 bar
Steam/Gases/Liquids
Round-dowel level indicator

Mod.166-ER EN ASME/ANSI
Round-dowel level indicator box

- Connection: Round-dowel Ø 20 mm.
- Box nº: 0 to X
- Material: Cast steel. PN-16, PN-40
- Stainless steel. PN-40

For use in boilers, receivers, cisterns, reservoirs, ...etc., to control the level of liquids, gases and steam.
A multiple-slot polyprismatic viewer allows the level to be optically read, clearly differentiating liquid and gas phases from liquid ones.

Depending on version

-60°C to +400°C 40,00 bar Steam/Gases/Liquids

Mod.666 EN ASME/ANSI
Level gauges

- Connection: Flange
- DN: 20 and 25
- Material: Cast steel. PN-16
- Cast steel. PN-40
- Stainless steel. PN-40
- Seal: Metal
- Blowoff valve: Mod. 999 3/8" with simple joint plug

Square-dowel level indicator

Mod.166-EC EN ASME/ANSI
Square-dowel level indicator box

- Connection: Square-dowel □ 18 mm.
- Box nº: 0 to X
- Material: Cast steel. PN-16, PN-40
- Stainless steel. PN-40
- Blowoff valve: Mod. 999 3/8" with simple joint plug

For use in boilers, receivers, cisterns, reservoirs, ...etc., to control the level of liquids, gases and steam.
A multiple-slot polyprismatic viewer allows the level to be optically read, clearly differentiating liquid and gas phases from liquid ones.

Depending on version

-60°C to +400°C 40,00 bar Steam/Gases/Liquids

Mod.466 EN ASME/ANSI
Level gauges

- Connection: Flange
- DN: 20 and 25
- Material: Cast steel. PN-16
- Cast steel. PN-40
- Stainless steel. PN-40
- Seal: Metal
Window Sight glasses-
Level indicators

Mod. 066
- Type reflection: A 5 prisms 0 to IX
 B 5 prisms 0 to IX
 H 5 prisms 0 to IX
- Type transparency: A V to IX
 B V to IX
 H V to IX
- Material: Borosilicate
 Klingert cardboard type (Joint)
 Graphite (Joint)

For visual checking of the level of liquids in all types of vessel, including those under pressure, in special thermal and chemical conditions. Also for checking processes. The quality of the sight glass satisfies the most demanding safety standards and industry guarantees in general.

Mod. 066-PM
- Type: A 1 to X
 B/H 1 to X
- Material: Natural muscovite mica

In combination with transparent glasses the life of these is increased when working at high pressures and temperatures.

Also, they are protected from erosion, which results from the effects of the corrosive chemical components, alkaline solutions, boiler water, steam, caustic products, hydrofluoric acids, hot and concentrated phosphoric acids, sodium and potassium hydroxides and other contaminating, viscous or corrosive media.

Applicable in level indicators for electrical generation plants, thermal power plants, petroleum refineries, petrochemical plants, pressure vessels, fertilizers, sugar refining plants, paper mills, etc...

Reflection and transparency glasses
- For level indicator box

Mica shield
- For level indicator box

Depending on version

- Temperature: -243°C to 260°C
- Pressure: 100.00 bar
- Media: Steam/Gases/Liquids
Mod. 999 EN

Blowoff valve

- **Female thread**
 - R: 3/8” and 1/2”
 - Material: Brass, PN-25
 - Seal: PTFE (Teflon)-Metal

- **Male thread x Female thread**
 - R: 3/8” and 1/2”
 - Material: Stainless steel, PMS-56 bar
 - Seal: PTFE (Teflon)-Metal

Simple plug

- **Male thread x Tube Ø 12/10 and Ø 15/13 mm.**
 - R: 3/8” and 1/2”
 - Material: Cast steel
 - Material: Stainless steel

Sleeve

- **Male thread**
 - R: 3/8” and 1/2”
 - Material: Cast steel

Depending on version

-60°C to +260°C
56.00 bar
Steam/Gases/Liquids