Automatic continuous desalting valve

For steam boilers

Model 560 - A

The conductivity electrode EC-1, the desalting controller RD-1 and the continuous desalting valve with servomotor allow the automatic desalting process of boiler water which eliminates:

Organic matter and mineral salts in solution. (Calcium, magnesium, sodium, potassium, iron, bicarbonate ions, chlorides, sulphates, nitrates, ...etc.).

Solid materials in suspension. (Sand, clay, metal residues, rock residues, organic matter, ...etc.).

The continuous bleeding process prevents:

- Damage caused by erosion and perforation, entailing the following high costs:
 - Direct: Replacement or repair of materials.
 - Indirect: Stoppages, product losses, ...etc.
- Danger of boiler explosion.

and reduces:

Incrustations and sediments caused by precipitation of calcium and magnesium salts, which obstruct thermic transmission and which cause unnecessary and excessive fuel consumption.

Foam formation caused by excessive saline concentration, with its corresponding drag. This combination of measuring comparison and control ensures minimum water loss and thus gives considerable energy savings

Conforms to the low voltage directive 73/23/CE version 93/68/CE. According to the electromagnetic compatibility directive 89/336/CE version 93/68/CE.

Specifications

- The unit consists of a Continuous desalting valve with servomotor, a Conductivity electrode EC-1 and Desalting controller RD-1 with or without assembly cupboard.

A Continuous desalting valve with servomotor

Faucet for taking samples: Makes process of analysing the salt concentration of boiler water easier. Possibility of guided connection for pipes with a Ø of 6/8 mm.

Reader plate: Allows bleeding positions to be seen clearly and concisely, even from some distance away.

Plug for draining the measuring nozzle.

Measuring nozzle: Acts as a valve, measuring and control organ. The water under pressure expands silently and gradually into it. Thus, dirt, incrustations and salt deposits are removed. Due to this gradual expansion, the system does not suffer erosion.

Servomotor mounted on the valve on an angle mounting. A synchronised reversable motor is used as a transmission element. Via gearing it adjusts the position of the regulation lever.

SECCION DE CORTE A.A MULL MULL Destination	0500		N°. PIECE			PIECE				MATE	BIAI	
3 Control were state	SECCION	N DE CORTE A-A	1			FILCE			Carbon s	steel (EN-1	.0619)	
4 Provide intervention Automation Automation 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Carbon s</td> <td>teel (EN-1</td> <td>.1191)</td> <td></td>									Carbon s	teel (EN-1	.1191)	
S September Name September Name <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Aluminiu</td> <td>m (EN-AC-</td> <td>44200)</td> <td></td>									Aluminiu	m (EN-AC-	44200)	
1 1	(35) (21) (36) (20) (19)	(18) 💾 (15) (17) 🖤 🔏 😡	5	Samp	ole-taking fau	icet body			Stainless	steel (EN-	1.4008)	
B B											0007)	
9 10 Meaning nozio agi Banuaria nozio agi Banuari agi Banuari agi Banuaria nozio agi Banuari agi Banuar						seating			Stainless	steel (EN-1	1 4028)	
0 0		8 18		Meas	uring nozzle	cap			Stainless	steel (EN-	1.4028)	
13 Masking notice hat dial Stanisles deal (EN: 1197) 0 0 0 0 0 Cance and the stanisles of the stanis the stanisles of the stanisles of the st			11			endless nut			Stainless	steel (EN-	1.4028)	
● ●	22	30				shaft						
Image: Construct of the c		(3)	14	Samp	ple-taking fau	icet gland bo	xdy		Carbon s	steel (EN-1	1191)	
Image: Start Sta						icet gland wa	asher					
Image: Second				Sam	ole-taking fau	ucet shaft			Stainless	steel (EN-	1.4401)	
21 Sampeleking induction consider Curbon state (E+1:191) 22 Astrop leking induction consider Curbon state (E+1:192) 23 Astrop leking induction consider Curbon state (E+1:192) 24 Astrop leking induction consider Curbon state (E+1:192) 25 Daving plug Curbon state (E+1:192) 26 Sarave Sarave 27 Sarave Curbon state (E+1:192) 28 Sarave Curbon state (E+1:191) 29 Sarave Curbon state (E+1:191) 20 Curbon state (E+1:191) Curbon state (E+1:191) 20 Curbon state (E+1:191) Curbon state (E+1:191) 20 Curbon state (E+1:191) Curbon state (E+1:191) 20 Curbon state ((29 T 🚺 🕐 🛄 😗 🚥 (30)	19	Seal	-				Stainless	s steel (EN-	1.4401)	
22 Address Curbon steel (E+1:008) 23 Address Curbon steel (E+1:008) 24 Address Curbon steel (E+1:008) 25 Daiming LAG Curbon steel (E+1:108) Curbon steel (E+1:108) 25 Daiming LAG Sortes Curbon steel (E+1:108) Curbon steel (E+1:108) 26 Address Curbon steel (E+1:108) Curbon steel (E+1:108) Curbon steel (E+1:108) 27 Book Curbon steel (E+1:108) Curbon steel (E+1:108) Curbon steel (E+1:108) 28 Address Sortes Curbon steel (E+1:108) Curbon steel (E+1:108) 28 Address Sortes Curbon steel (E+1:108) Curbon steel (E+1:108) 29 Sortes Curbon steel (E+1:108) Curbon steel (E+1:108) Corbon steel (E+1:108) 29 Sortes Curbon steel (E+1:108) Curbon steel (E+1:108) Corbon steel (E+1:108) 20 Sortes Curbon steel (E+1:108) Curbon steel (E+1:108) Corbon steel (E+1:108) 20 Sortes Curbon steel (E+1:108) Curbon steel (E+1:108) Corbon steel (E+1:108) 20 Curbon steel (E+1:108) Curbon st				Samp	ple-taking fau	icet connecti	ion nut		Carbon s	steel (EN-1	.1191)	
9 0		(34) (1)										
9 0			23	Adap	ter nut				Carbon s	steel (EN-1	.0308)	
22,8,2 Soraw Calibra steel (EN-11813) 0									Carbon s	steel (EN-1	1191)	
9 0		(38)	26, 28, 42	Screv					Carbon s	steel (EN-1	.1191)	
30 Mathem Carbon steel (FN-1141) Statistics steel (EN-14401) 33 32 Mathem Statistics steel (EN-14401) Statistics steel (EN-14401) 33 32 Mathem Statistics steel (EN-14401) Opport 35 35, 35, 37 Joint Coopport Coopport 36 Mathem Statistics steel (EN-1410) Coopport 37 Joint Corport Carbon steel (EN-1110) Coopport 36 Mathem Statistics steel (EN-1401) Coopport Carbon steel (EN-1110) Coopport 40 Coopport Carbon steel (EN-1110) Carbon steel (EN-1110) Coopport Statistics steel (EN-1110) Coopport 41 Plange Plange Plange Statistics steel (EN-1110) Coopport Statistics steel (EN-1110) Coopport Statistics steel (EN-1110) Coopport Statistics Steel (EN-1110) Statistics (EN-11100) Statistics (EN-1110) <td< td=""><td></td><td></td><td>27</td><td>Stud</td><td></td><td></td><td></td><td></td><td>Carbon s</td><td>steel (EN-1</td><td>.1181)</td><td></td></td<>			27	Stud					Carbon s	steel (EN-1	.1181)	
Image: Static static (SN-1141) Static static (SN-1141) Carbon static (SN-1141) Carbon static (SN-1141) Image: Static static (SN-1141) Image: Static static (SN-1141) Image: Static static static (SN-1141) Carbon static (SN-1141) Carbon static (SN-1141) Image: Static st		Ŭ			v				Carbon s	steel (EN-1	.1141)	
(a) 1 1 <td></td> <td>(10) 🛄 🔰</td> <td>31</td> <td>Wash</td> <td>ner</td> <td></td> <td></td> <td></td> <td>Stainless</td> <td>steel (EN-</td> <td>1.4401)</td> <td></td>		(10) 🛄 🔰	31	Wash	ner				Stainless	steel (EN-	1.4401)	
0 0		(9)			er				Stainless Carbon	steel (EN-	1.4401)	
35, 36, 37 36, 39 Sal 36, 37 Sal 30 Carphing Carphing <td>(42)</td> <td></td> <td>34</td> <td>Disc s</td> <td></td> <td></td> <td></td> <td></td> <td>Vanadiu</td> <td></td> <td></td> <td>8159)</td>	(42)		34	Disc s					Vanadiu			8159)
0 Cachon steel (EN-1.319) / Stands stoel (EN-1.439) 40 Schning Cathon steel (EN-1.319) / Stands stoel (EN-1.439) 43 Schning Cathon steel (EN-1.439) 43 Schning Cathon steel (EN-1.439) Schning 60 Cocken Schning Cathon steel (EN-1.439) Schning 60 Cocken R 0 Schning		(8)	35, 36, 37						Copper			
$ \begin{tabular}{ c c c c c c } \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	(41)				lina						.1191)	
Image: Constraint of the second se	(7)		41	Sprin	g				Stainless	steel (EN-	1.4310)	
$ \begin{tabular}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	(40)								— Carbon s	tool (ENL1	0460)	
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●	3-1			riding	DN				Garboirte	15 to 25 (E	N, ANSI)	
● ●			OPERATING						10			00.4
Image: Construction OPERATIONS ISSOR ASME BISS ISSOR ASME BISS ISSOR ASME BISS PRESSURE IN bar MAXIMUM TEMPERATURE IN *C 19.2 17.7 13.8 12.1 MAXIMUM TEMPERATURE IN *C 6.0 100 200 250 MAXIMUM TEMPERATURE IN *C 5.0 8.0 100 100 100 100 MAXIMUM TEMPERATURE IN *C 100 11 11 11 11 11 11 11 11 11 <t< td=""><td></td><td></td><td>CONDITIONS</td><td></td><td></td><td></td><td></td><td>`</td><td></td><td></td><td></td><td></td></t<>			CONDITIONS					`				
Isour Asking Brits Maximum Relevent in b arrow 90 100 200 250 CONDITIONS MAXIMUM TEMPERATURE IN bar 40 37.4 33.6 30.7 CONDITIONS MAXIMUM TEMPERATURE IN bar 40 37.4 33.6 30.7 MAXIMUM TEMPERATURE IN bar 40 37.4 33.6 30.7 MAXIMUM TEMPERATURE IN bar 40 37.4 33.6 30.7 MAXIMUM TEMPERATURE IN bar 50 100 200 250 MAXIMUM TEMPERATURE IN bar 10 10 200 250 MAXIMUM TEMPERATURE IN bar 10 10 200 250 Maximum Temperature IN*C 50 100 200 250 MIT MIT 11 11 11 11 11 11 11 11 11 11 11 11 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110	33		PN-40 EN 1092-1					,				
PRESSURE IN bar 40 37.4 33.6 30.7 300 ⁴ ASME B16.5 MAXIMUM TEMPERATURE IN *C 50 100 200 250 Image: Comparison of the second		(37) -	CONDITIONS					`	- /		- / -	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		25 📥	OPERATING					,				
III + Flanges class 300 lbs ASME/ANSI B 16.5 $III + Flanges class 300 lbs ASME/ANSI B 16.5$ $III + Flanges class 300$			CONDITIONS 300# ASME B16.5	I				>				
$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $			DN		15			20			25	
CONNECTIONS III-Flanges class 300 lbs ASME/ANSI B 16.5 I II II III IIII IIII IIII IIII IIII IIII IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	4						I- Flang	es PN-40 E				
CONNECTIONS III-Flanges class 300 lbs ASME/ANSI B 16.5 I II II III IIII IIII IIII IIII IIII IIII IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII										3 16.5		
I II III IIII IIIII IIIII IIIII IIIII IIIII IIIII IIIIII IIIIII IIIIII IIIIII IIIIIIII IIIIIII IIIIIIIII IIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	7			CONNECTIONS								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				/10			124					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				419		419	424		429	429		434
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
L3 175 175 60 d 60 60 60 60 D 95 90 95 105 100 115 115 110 125 K 65,00 66,70 75,00 69,90 82,60 85,00 79,40 88,90 I 14,00 15,90 14,00 15,90 14,00 15,90 19,10 14,00 15,90 19,10 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 17,50 DRILLS N°. 4 4 4 4 4 4												
d 60 60 60 D 95 90 95 105 100 115 110 125 K 65,00 60,30 66,70 75,00 69,90 82,60 85,00 79,40 88,90 I 14,00 15,90 14,00 15,90 14,00 15,90 19,10 14,00 15,90 DRILLS N°. -4 -4 -4 -4 -4 -4 -4												
D 95 90 95 105 100 115 110 125 K 65,00 60,30 66,70 75,00 69,90 82,60 85,00 79,40 88,90 I 14,00 15,90 14,00 15,90 14,00 15,90 19,10 14,00 15,90 19,10 14,00 15,90 19,10 14,00 15,90 19,10 14,00 15,90 19,10 14,00 15,90 10,00 11,5 11,5 11,00 15,90 19,10 14,00 15,90 19,10 14,00 15,90 19,10 14,00 15,90 11,00 12,70 15,90 18,00 14,30 17,50 DRILLS N°. -4												
K 65,00 60,30 66,70 75,00 69,90 82,60 85,00 79,40 88,90 I 14,00 15,90 14,00 15,90 14,00 15,90 19,10 14,00 15,90 19,10 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 15,90 14,00 14,00 15,90 14,00 14,00 15,90 14,00 14,00 14,00 17,50 DRILLS N°. -4												
I 14,00 15,90 14,00 15,90 19,10 14,00 15,90 19,10 b 16,00 11,20 14,30 18,00 12,70 15,90 18,00 14,30												
b 16,00 11,20 14,30 18,00 12,70 15,90 18,00 14,30 17,50 DRILLS N°. 4 4 4 4 4 4 4 WEIGHT IN kgs. 7,20 6,45 6,91 7,60 6,85 7,67 8,16 7,48 8,45		A CARA	K									
DRILLS N°. 4 4 4 4 WEIGHT IN kgs. 7,20 6,45 6,91 7,60 6,85 7,67 8,16 7,48 8,45												
WEIGHT IN kgs. 7,20 6,45 6,91 7,60 6,85 7,67 8,16 7,48 8,45			b	16,00	11,20	14,30	18,00	12,70	15,90	18,00	14,30	17,50
		T	DRILLS N°.									
		172										
			WEIGHT IN kgs.	7,20	6,45	6,91	7,60	6,85	7,67	8,16	7,48	8,45

Operation

If the accepted conductivity value previously selected is exceeded the desalting controller RD-1, via indication from the conductivity electrode EC-1, operates the servomotor and opens the continuous desalting valve to the **OPEN** position. When the conductivity decreases the adjustment mechanism returns to the **SERVICE** position giving continuous economical desalting. When the "valve closed" switch is on the adjustment mechanism automatically puts the valve in the **CLOSED** position. These positions are fixed by the micro limit switches.

Adjustment of micro limit switches

The micro limit switches come ready adjusted from the factory:

Using an screwdriver the positions of the micro switch can be readjusted. Turning the right to left decreases the purge position and turning it the left to right increases it.

e (1) OPEN 35°	Mici	е	ige
(2) CLOSED 0°			
(3) SERVICE 8°			

Manual or automatic operation

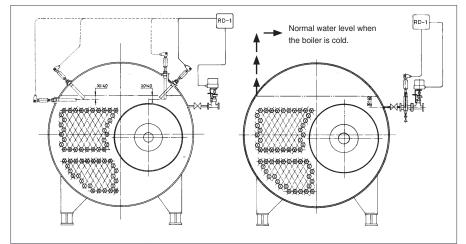
To operate the valve manually:

1.Disconnect the electrical current to the servo. Open the servomotor cover and remove the x1 connector.

- 2. Press coupling pin K1 (see page 3 Fig. 1 Mod. 560 Complementary technical instructions).
- 3. Move the adjustment lever to the desired position and release bolt K1.
- 4. Cover the cover.

Restoring automatic operation:

 Place the regulating lever in the position between 0° and 35° on the nameplate of the valve using the bolt K1 (see page 3 Fig.1 Mod. 560 Complementary technical instructions).
 Connect actuator connector X1.


- 2. Connect actuator connector
- 3. Cover the cover.
- 4. Switch on power.

B Servomotor

Reversible Synchronous Motor, 10 VA Consumption.

Gearbox with permanent lubrication. Voltage: 220 V CA -15% / +10%, 50...60 Hz ±6% Communted micro limit switches: 6 Adjustment time: 65 s / 90° Cell: Maximum load: 18 Nm Ambient temperature: 60 °C Protection: IP-66

Installation examples

Operation, efficiency and emptying

To establish the boiler's salinity, the quantity of salts extracted per unit of time must be equal to that of the water supply in this same period.

Lo que se puede expresar: $S \cdot A = C \cdot P$

R = Real steam production of the boiler (kg/h)

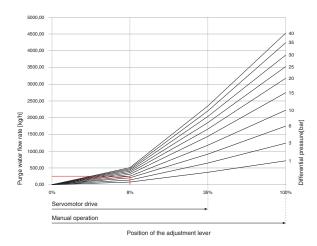
- A = Feed water (kg/h)
- P = Amount of water extracted in the bleeding process (kg/h)
- S = Conductivity of the water supply (μ S/cm)
- C = Desired conductivity inside the boiler (μ S/cm)

The effect is achieved when the salts are removed continuously and without movement in order to prevent uncontrolled water losses from the boiler.

The amount of water extracted in the bleeding process: $P = \frac{R \cdot S}{C \cdot S}$

Using the calibrated scale, the lever allows exact adjustment of the measuring nozzle.

We shall set the lever at the position that allows us to remove a volume of water (P) at a differential pressure. Differential pressure = Working pressure - (Back pressure + Load losses).


Automatic continuous purge (servo-driven) is achieved with setting values from 0 to 35.

Position 100, with manual actuation, corresponds to the fully open nozzle section and allows a complete purge in a short time. In this case, the flow rate is approximately twice as high as that of the 35% value on the scale.

Example:

 $\Delta p = 10 \text{ bar}$ R = 1850 kg/h $S = 800 \mu\text{S/cm}$ $C = 6200 \mu\text{S/cm}$ P = 274 kg/h

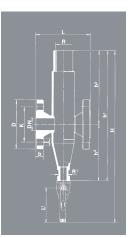
Of which approximately 10% by means of sludge and sludge purge (Mod. 660, 660-A or 460) and the rest by means of salt purge (Mod 560 or 560-A).Water to be evacuated through the valve continuous salt drain valve \sim 250 kg/h.

The combination of the Continuous desalting valve* and the Blowdown valve for bleeding dirt and sludge• is essential for optimizing the boiler's efficiency, and include its maximum security and availability. Neither of them can be replaced with others not designed for this specific application. Their moderate cost is depreciated in the short term.

* (See brochure Model 560-A). • (See brochure Model 660, 660-A, and 460).

Conductivity electrode. EC-1

Connection: Whitworth gas-tight cylindrical male thread ISO 228/1 (DIN-259) 1". NPT thread ANSI-B2.1 via adapter. 1" F-GAS to 1" or 11/4" M-NPT. Maximum operating temperature: 238°C.

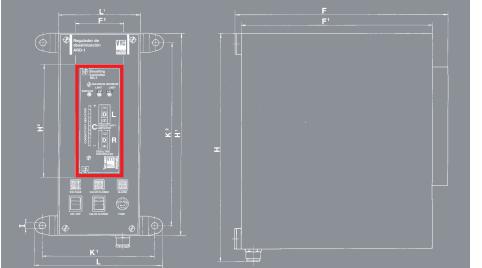

1-1

Protection: IP-65.

Maximum operating pressure: 32 bar.

R	1"				
Н 419					
h1 252					
h2 167					
L 53					
WEIGHT IN kgs. 0,97					
CODE 2102-560.7102					
Electrode connection collector Nominal pressure: PN-40. Allowable pressures and temperatures according to DIN-2401. Sheet 2. Flange connection: DN-20 (EN-1092-1). Electrode connection: Whitworth gas- tight cylindrical female thread ISO 228/1 (DIN-259) 1".					

DN	20
Н	390
h1	267
h2	157
h3	110
L	115
R1	1/2"
L1	100
D	105
K	75
	14
b	18
DRILLS N°.	4
WEIGHT IN kgs.	3,33
CODE	2102-560.83442



We recommend adding a blowoff valve to the equipment, Mod. 999, 1/2" joined to the waste pipe for periodic release of sludge. As a minimum a 2 ÷ 3 second release must be performed every 8 hours.

Desalting controller. ARD-1. RD-1

Voltage: 220 V.A.C. ± 10% 50/60 Hz. Electric consumption: Approximately 4,5 VA. Relay contact: 250 V/4 A 750 VA. Safety contact: Maximum 2A-Mitteltraeg. Ambient temperature: -20 to + 70°C. Regulator protection: IP - 00. Regulator protection in assembly cupboard: IP - 50. Regulation index: 2,5 to 20 mS. Limit index: 40 to 75 mS. Desalting controller with assembly cupboard ARD-1.

Desalting controller without assembly cupboard RD-1.

MODEL	ARD-1	RD-1
н	265	—
H1	250	—
H ²	—	137
F	245	—
F ¹	220	—
F ²	—	57
L	158	—
L1	100	—
K ¹	138	—
K ²	226	—
l l	7,5	—
WEIGHT IN kgs.	2,50	0,93
CODE 2102-560.	0001	0002

VYC industrial, sau

lustrial.

Informative brochure, without obligation and subject to our General Sales Conditions.

thing controller, without assembly capboands BDB triscal splied in a 19" sub-rack according to DIN-41494. 🌔 +34 93 735 76 90 🖂 119 🔘 info@vycindustrial.com