Contrôleur de circulation a glace

Modèle 265

Contrôleur de circulation a double glace

Raccordement vissée Mo Raccordement à brides Mo

Modèle 365 Modèle 366

Pour s'assurer de l'écoulement, du sens de l'écoulement et de l'état du fluide dans un tronçon de tuyauterie.

Aide à détecter les blocages de vannes, de filtres et d'autres équipements de la ligne.

Permet en particulier de vérifier le fonctionnement correct des purgeurs de condensats et de s'assurer qu'il n'y a aucune perte de vapeur, en évitant ainsi les coûts qui en résultent.

Permet d'observer la viscosité, la turbidité et, en particulier, la couleur d'un produit lors des différentes phases de son processus de production.

Applicables aux canalisations de transport de liquides, de vapeur et de leurs condensats, etc. dans tout type d'industrie (chimique, pétrochimique, pharmaceutique, alimentation, etc.).

En conformité avec les exigences de la directive 2014/68/EU.

Vérification CE des hublots certifiés par TÜV Rheinland Industrie Service GmbH, Notified Body for Pressure Equipment ID-No. 0035.

Examen CE de vérification finale de produit (Module B) certifié par: TÜV Rheinland Ibérica ICT, S.A.

En conformité avec la directive ATEX 2014/34/EU "Appareils et systèmes de protection destinés à être utilisés en atmosphères potentiellement explosives".

Caractéristiques

- Longueur de montage réduite selon EN-558-1 série 1.
- Matériaux spécialement choisis pour leur résistance à l'usure, à la température et à la corrosion. Entièrement recyclables.
- Hublots d'observation circulaires en borosilicate selon DIN-7080, d'une grande stabilité chimique, d'une pureté et d'une homogénéité extraordinaires. Faible coefficient de dilatation thermique. Précontraints par traitement thermique pour assurer une grande résistance mécanique. Résistance élevée aux changements brusques de température, de pression et à l'agression chimique, ce qui garantit une longue durée de vie. Rectification parfaite des portées de joint. En cas de rupture accidentelle, la vitre ne se brise pas en projetant des morceaux.
- Construction simple.
- Exempts de composants mobiles, ce qui garantit une maintenance minimum.
- Compacts et solides. Dimensions et poids réduits, ce qui facilite leur entreposage.
- Conception permettant une visualisation claire et précise du fluide.
- Installation aisée avec possibilité de montage en toute position.
- Les conditions de fonctionnement et de montage sont spécifiées par marquage sur le corps.
- Silencieux.
- Tous les hublots sont strictement testés et vérifiés.
- Chaque élément est numéroté, enregistré et contrôlé. Sur demande préalable, le hublot sera accompagné de certificats de matériaux, de coulées, d'essais et de rendements.

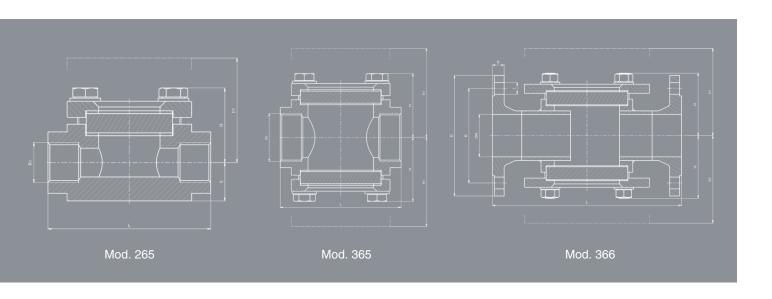
IMPORTANT

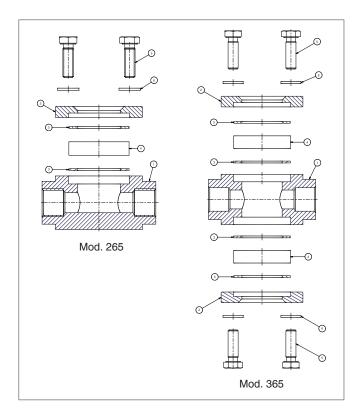
Nous recommandons, si nécessaire, l'utilisation de gaines textiles d'isolation thermique et acoustique modèle 008. Sur demande:

- Possibilité de fabrication en matériaux d'autres types, pour conditions de travail spéciales (hautes températures, fluides, etc.).
- Autres raccordements.
- Lamelles de mica. En combinaison avec des vitres transparentes, elles augmentent leur durée de vie lorsqu'on travaille sous hautes pressions et températures. Elles les protègent également contre l'érosion, résultant de l'effet des composants chimiques corrosifs, des solutions alcalines, des eaux de la chaudière, de la vapeur, des produits caustiques, des acides fluorhydriques, des acides phosphoriques chauds et concentrés, des hydroxydes de sodium et de potassium et d'autres milieux contaminés, visqueux ou corrosifs.

Applicables aux hublots d'observation pour centrales électriques, centrales thermiques, raffineries de pétrole, pétrochimiques, récipients sous pression, fertilisants, sucreries, usines à papier, etc.

NIO		MODELE 265-365														
N°. PIECE	PIECE	MATERIAUX														
TILOL			ACIER AU	CARBONE		ACIER INOXYDABLE										
1	Corps	Acie	r au carbon	e (EN-1.058	0)(1)	Acier inoxydable (EN-1.4401)										
2	Couvercle	Acie	r au carbon	e (EN-1.058	0)(1)	Acier inoxydable (EN-1.4401)										
3	Joint	Graphite														
4	Vitre	Borosilicate														
5	Vis	Ac	ier au carbo	ne (EN-1.11	91)	Acier inoxydable (EN-1.4401)										
6	Rondelle	Ac	ier au carbo	ne (EN-1.11	41)	Acier inoxydable (EN-1.4401)										
	R	1/2" à 2" (GAS,NPT, SW)														
	PN		4	10		40										
CONDITIONS	PRESSION EN bar	40	35	28	24	40	34	32	29							
CONDITIONS DE TRAVAIL	TEMPÉRATURE MAX. EN ºC	120	200	280	280	120	200	280	280							
DE ITIAVAIL	TEMPÉRATURE MIN. EN ºC		-	10			-6	-60								


(1) R.1/2" à 1 en Acler au carbone (EN-1.1191)


									AODE	LE 36	6							
N°.	PIECE									RIAU)								
PIECE	PIECE																	
				ACIE	R AU	CARE	BONE		ACIER INOXYDABLE									
1	Corps		Acie	er au c	arbon	e (EN-	1.058	0)(1)	Acier inoxydable (EN-1.4401)									
2	Couvercle		Acie	er au c	arbon	e (EN-	1.058	0)(1)	Acier inoxydable (EN-1.4401)									
3	Joint	Graphite																
4	Vitre	Borosilicate																
5	Vis		Ac	ier au	carbo	ne (El	N-1.11	91)	Acier inoxydable (EN-1.4401)									
6	Rondelle		Ac	ier au	carbo	ne (El	N-1.11	41)	Acier inoxydable (EN-1.4401)									
7	Goujon		Ac	ier au	carbo	ne (El	N-1.11	81)	Acier inoxydable (EN-1.4401)									
8	Écrou	Acier au carbone (EN-1.1141) Acier inoxydable											le (EN-1.4401)					
9	Bride d'entrée	Acier au carbone (EN-1.0460) Acier inoxydable (EN-1.4401)																
10	Bride sortie	Acier au carbone (EN-1.0308) Acier inoxyd											oxydab	able (EN-1.4401)				
	DN	15 à 200 (EN, ANSI)																
	PN			16 40								6			4	10		
001101710117	PRESSION EN bar	15	13	12	11	39	35	33	31	16	14	13	13	37	35	33	32	
CONDITIONS DE TRAVAIL	TEMPÉRATURE MAX. EN ºC	120	200	250	280	120	200	250	280	120	200	250	280	120	200	250	280	
DETRAVAIL	TEMPÉRATURE MIN. EN ºC				-	10							-(30				

(1) DN-15 à 25 en Acier au carbone (EN-1.1191)

RESTRICTIONS SUPPLÉMENTAIRES: PN-16 DN-200 PMS-8,5 bar PN-40 DN-100 PMS-25 bar

PN-40 DN-125 PMS-25 bar PN-40 DN-150 PMS-16 bar

Installation

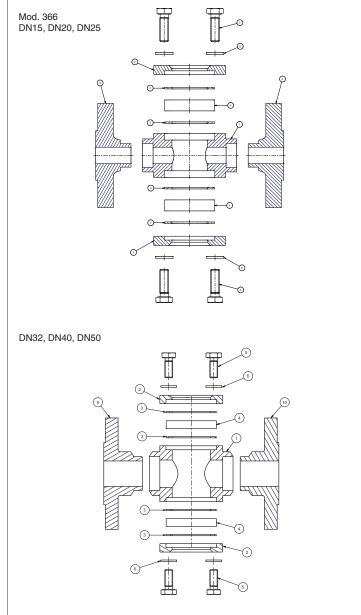
Peut être installé après des vannes, des filtres et d'autres équipements de la ligne.

En cas d'installation après un purgeur de condensats, il faut le monter sur son point le plus bas. Si le purgeur est à évacuation intermittente, il est recommandé de l'installer 1 mètre en aval pour éviter l'usure par érosion. Prévoir des vannes d'arrêt qui permettent de sectionner et

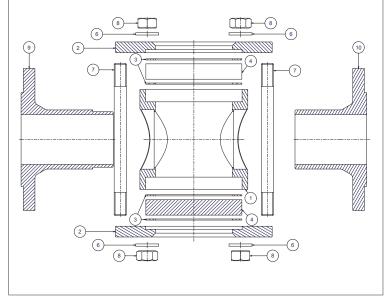
d'effectuer des maintenances.

Porter des lunettes de protection lorsqu'on observe l'écoulement du flux par un hublot.

Maintenance


Dans certaines applications, l'érosion se produit par l'effet des composants chimiques corrosifs, des solutions alcalines, des eaux de la chaudière, de la vapeur, des produits caustiques, des acides fluorhydriques, des acides phosphoriques chauds et concentrés, des hydroxydes de sodium et de potassium et d'autres milieux contaminés, visqueux ou corrosifs. S'il existe des signes d'usure, changer immédiatement la vitre.

Il faut rappeler qu'avant de démonter le hublot, il est nécessaire de dépressuriser et de sectionner la zone à l'aide des vannes d'arrêt.


Il faut également vérifier quel est le fluide transporté pour prendre, le cas échéant, des précautions supplémentaires, afin de prévenir tout accident. Une fois hors pression et à une température normalisée, le hublot peut être démonté de son emplacement.

Desserrer les écrous (8) ou les vis (5), retirer les rondelles (6), puis démonter le couvercle (2). Retirer les joints (3) et la vitre (4). Nettoyer l'encastrement.
Poser la nouvelle vitre (4) en intercalant les joints (3). Insérer le

couvercle (2), placer les rondelles (6) dans leur position, puis visser les écrous (8) ou les vis (5) à leur couple de serrage.

DN65, DN80, DN100, DN125, DN150 et DN200

	MODELE			265		365												
R1			1/2"		1"	1/2"		1"		11/2"	2"							
			Female Gas Whitworth cylindrical thread ISO 228/1 (DIN-259)															
CONNEXION			NPT thread, ASME B1.20.1															
Ends for welding SW ASME B16.11																		
	Н		39,00	45,00	57,00	39,00	45,00	57,00	62,00	75,50	92,50							
	h		20	25	30													
h ₁			60,00	66.00	87,00	60,00	66,00	87,00	92,00	110,00	130,00							
L			85	95	105	85	95	105	105	120	140							
PC	OIDS EN kg	S.	1,42	2,32	3,60	1,58	2,59	3,80	4,92	7,35 11,53								
	A OUED ALL	GAS	265.8024	265.8344	265.8104	365.8024	365.8344	365.8104	365.8144	365.8124	365.8204							
2101-	ACIER AU CARBONE	NPT	265.80241	265.83441	265.81041	365.80241	365.83441	365.81041	365.81441	365.81241	365.82041							
	OALIDONE	SW	265.80242	265.83442	265.81042	365.80242	365.83442	365.81042	365.81442	365.81242	365.82042							
CODE	AOIED	GAS	265.8022	265.8342	265.8102	365.8022	365.8342	365.8102	365.8142	365.8122	365.8202							
8	ACIER INOXYDABLE	NPT	265.50221	265.83421	265.81021	365.80221	365.83421	365.81021	365.81421	365.81221	365.82021							
	INOXIDADLL	SW	265.50222	265.83422	265.81022	365.80222	365.83422	365.81022	365.81422	365.81222	365.82022							

M	ODELE	366																							
	DN	15 20														2		40				50			
											1.	· Bride	s PN-	16 EN	-1092	·1									
											-	Bride	s PN-	40 EN	-1092	:-1									
CON	INEXION	III - Brides classe 150 lbs ASME B16.5 IV - Brides classe 300 lbs ASME B16.5																							
										1)	/ - Brid	des cla	asse 3	00 lbs	ASME	E B16.									
		- 1	Ш	III	IV	1	Ш	III	IV	1	Ш	III	IV	- 1	ll ll	III	IV	1	II	III	IV	- 1	Ш	III	IV
			39	,00				,00			57	,00				,00						92,50			
	h ₁		60	,00			66	,00		87,00					92,00				110	,50		130,00			
	L		1:	30			15	50		160			180				200				230				
	D	95		90	95	105	105		115	115	115	110	125	140	140	115	135			125		165			165
	K	65,00	65,00	60,30	66,70	75,00	75,00	69,90	82,60	85,00	85,00	79,40	88,90	100,00	100,00	88,90	98,40	110,00	110,00	98,40	114,30	125,00	125,00	120,70	127,00
	1	14,00	14,00	15,90	15,90	14,00	14,00	15,90	19,10	14,00	14,00	15,90	19,10	18,00	18,00	15,90	19,10	18,00	18,00	15,90	22,20	18,00	18,00	19,10	19,10
		16,00	16,00		14,30	18,00	18,00		15,90	18,00	18,00	14,30	17,50	18,00	18,00	15,90	19,10	18,00	18,00	17,50	20,70	18,00	20,00	19,10	22,30
N°. P	N°. PERÇAGES 4					4			4			4			4				4			8			
POID	S EN kgs.			06		4,69			6,60			9,07				12,00				18,00					
CODE	ACIER AU CARBONE	5024	8024	50241	80241	5344	8344	53441	83441	5104	8104	51041	81041	5144	8144	51441	81441	5124	8124	51241	81241	5204	8204	52041	82041
2101–366.	ACIER INOXYDABLE	5022	8022	50221	80221	5342	8342	53421	83421	5102	8102	51021	81021	5142	8142	51421	81421	5122	8122	51221	81221	5202	8202	52021	82021
																									=
M	ODELE									366															
	DN							0		100					125				150				200		
															-1092										
001															-1092										
CON	INEXION	III - Brides classe 150 lbs ASME B16.5 IV - Brides classe 300 lbs ASME B16.5																							
					I 15.7				107	11	/ - Bri			00 lbs	ASMI		5				I 157				15.7
	Н		100	III 9.00	IV		116	III 6,50	IV		105	.50	IV	<u> </u>	1/1	.00	IV		II 160	III	IV		196 196	III	IV
	h ₁			3,00 3,00				5,50	_												_		218		
	111							10		144,50 350				163,00 400			182,00 480					60			
	D	290 185 185 180 190			190	200	200	190	210	220	235	230	255	250	270	255	280	285	300	280	320	340	_ 00	345	
	 К																								
	T.	-	-	139,70			-								· ·	- 1	- 1		250,00	- '	1 1	-		298,50	
		18,00	18,00	19,10	22,20	18,00	18,00	19,10	22,20	18,00	22,00	19,10	22,20	18,00	26,00	22,20	22,20	22,00	26,00	22,20	22,20	22,00		22,20	

ACIER AU CARBONE 5224 8224 52241 82241 5304 8304 53041 83041 5404 8404 54041 84041 5504 8504 55041 85041 5604 8604 56041

ACIER AU CARBONE 5222 8222 52221 82221 5302 8302 53021 83021 5402 8402 54021 84021 5502 8502 55021 85021 5602 8602 56021

N°. PERÇAGES 8 8 4 8

12 12

58041 58021