Purgador de condensados a cubeta invertida

Modelo 343

Para extraer los condensados de vapor saturado o sobrecalentado a baja presión.

Aplicables en: tuberías de vapor, intercambiadores de calor, plantas con control automático de temperatura,... en industria química, petroquímica,... etc.

Características

- Funciona por la acción de una cubeta invertida que se desplaza por la diferencia de densidad entre el condensado y el vapor. En presencia de condensado la cubeta desciende, libera el obturador del asiento y permite la evacuación del condensado. Al entrar vapor la cubeta asciende y bloquea el paso asegurando una línea exenta de condensados. Esta acción se repite de forma cíclica eliminando automáticamente el aire y los condensados acumulados.
- Materiales seleccionados cuidadosamente por su resistencia al desgaste, temperatura y corrosión.
- Simplicidad constructiva.
- Largo ciclo de vida con una elevada eficiencia operativa.
- Mantenimiento prácticamente nulo.
- Compactos, robustos. Peso y tamaño reducido, lo que facilita su almacenaje.
- Ideal para capacidades de descarga de condensado medias a altas.
- Se comporta extraordinariamente en descargas intermi-
- Descarga a la temperatura del vapor, lo que asegura una transferencia de calor máxima.
- Precisos en apertura y cierre, evitando pérdidas de
- Placa de características que permite identificar las condiciones de servicio y de montaje.
- Montaje únicamente en vertical y siguiendo el paso de flujo que nos indica la flecha.
- Silenciosos.
- Permanecen imperturbables a vibraciones, golpes de ariete, vapor recalentado, condensado corrosivo, heladas, etc.
- No le afectan las contrapresiones ni las variaciones de temperatura del condensado.
- Superficies de cierre tratadas, rectificadas, lapeadas y bruñidas por lo que se consigue un grado de estanqueidad, incluso superior al exigido según EN 12266-1.
- Todos los purgadores son ensayados y verificados rigurosamente.
- Cada uno de los componentes está numerado, registrado y controlado. Si previamente se solicita se acompañará al purgador certificaciones de materiales, coladas, pruebas y rendimientos.

IMPORTANTE

Recomendamos, si procede, el uso de chaquetas textiles de aislamiento térmico y acústico Modelo 008.

— Posibilidad de fabricación en otros tipos de materiales, para condiciones de trabajo especiales (altas temperaturas, fluidos, etc.).

R		1/2"			3/4"		1"				
CONEXIONES		Rosca Hembra Gas Whitworth cilíndrica ISO 228/1 (DIN-259) Rosca NPT ANSI/ASME B1.20.1									
Н			73			97		142			
H1			150			210		284			
h		87				109		119			
L		130				130		180			
øΒ			100		100			160			
PESO EN kgs.			3,20		3,80 9,20						
MÁXIMA PRESIÓN DIFERENCIAL IN bar		11,00	8,50	4,00	12,50	8,50	4,00	14,00	8,50	4,00	
CÓDIGO 2108 –	GAS	343.50261	343.50262	343.50263	343.53461	343.53462	343.53463	343.51061	343.51062	343.51063	
	NPT	343.502611	343.502621	343.502631	343.534611	343.534621	343.534631	343.510611	343.510621	343.510631	

N°.								
PIEZ		PIEZA	MATERIAL					
1		Cuerpo	Fund.gris perl. (EN-5.1301)					
2	!	Тара	Fund.gris perl. (EN-5.1301)					
3,10)	Junta	Cartón tipo klingerit					
4		Tornillo	Acero al carbono (EN-1.1191)					
5	;	Placa	Acero inoxidable (EN-1.4301)					
6	;	Remache	Acero al carbono (EN-1.1141)					
7,9)	Tapón	Acero al carbono (EN-1.1181)					
8	}	Junta	Cobre					
11		Filtro	Acero inoxidable (EN-1.4301)					
12		Cubeta	Acero inoxidable (EN-1.4301)					
13	}	Brazo	Acero inoxidable (EN-1.4301)					
14		Palanca	Acero inoxidable (EN-1.4301)					
15	i	Refuerzo	Acero inoxidable (EN-1.4301)					
16	;	Obturador	Acero inoxidable (EN-1.4028)					
17	·	Pasador	Acero inoxidable (EN-1.4301)					
18		Guia	Acero inoxidable (EN-1.4301)					
19)	Soporte	Acero inoxidable (EN-1.4301)					
20)	Tornillo	Acero inoxidable (EN-1.4301)					
21		Asiento	Acero inoxidable (EN-1.4028)					
22	22 Casquillo		Acero inoxidable (EN-1.4301)					
		R1	1/2"a 1"(GAS,NPT)					
ω <u> </u>	PRESIÓ	N MÁX. ADMISIBLE EN bar	16					
ONE	TEMPER	RATURA MÁX. ADMISIBLE EN ºC	220					
CONDICIONES DE SERVICIO		APRESIÓN MÁX. ADMISIBLE A LA SALIDA CTO A LA PRESIÓN DE ENTRADA	90%					
CC	DIFERE	NCIAL MÍNIMO DE PRESIÓN EN bar	0,1					

\$\frac{1}{2}\frac{1}{2

CAPACIDADES DE DESCARGA DE CONDENSADO EN kg/h														
R1	PRESIÓN DIFERENCIAL	PRESIÓN DIFERENCIAL EN bar												
	MÁXIMA EN bar	0,5	1	2	3	4	5	6	7	8,5	10	11	12,5	14
1/2"	11	40	80	125	140	180	190	210	225	245	260	280		
	8,5	65	115	180	215	250	265	280	290	300				
	4	110	160	210	250	280								
3/4"	12,5	65	115	180	215	250	270	290	310	330	360	375	390	
	8,5	120	180	250	290	330	360	380	400	430				
		160	225	310	350	410								
1"	14	65	125	200	265	310	340	385	420	450	485	500	530	565
	8,5	190	330	490	600	660	725	785	830	860				
	4	265	430	640	800	890								

Factor de seguridad

En el momento de descarga la temperatura del condensado se corresponde a la temperatura del vapor, por lo que la capacidad real del purgador es menor respecto al caudal de condensado según la tabla de capacidades. Por ello debemos aplicar un factor de seguridad a la capacidad de descarga requerida.

	FACTOR DE SEGURIDAD					
CAMPO DE APLICACIÓN	Presión					
	Constante	Variable				
Procesos de calentamiento	2	3				
Colector de condensados	1,5	1,5				
Líneas de vapor	1,5	1,5				

Guía de selección

Seleccionar el primer tamaño de purgador que a la presión diferencial de servicio englobe la capacidad de descarga que necesitemos multiplicada por un factor de seguridad de 2 a 3. Por Ejemplo: Presión de entrada: 4 bar. Contrapresión: 1 bar. Capacidad de descarga requerida: 150 kg/h. Factor de seguridad: 2. Capacidad de descarga a selección: 300 kg/h. (2x150 kg/h).

Escogeremos el Mod.343 de 3/4" para una presión diferencial máxima de 4 bar.

