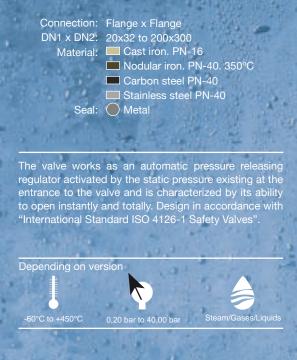
Fabrication program


Safety EN

Full lift safety valve with spring loading. (AIT)

Mod. 496 Mod. 495

Connection: Female thread x Female thread FR1 x FR2: 3/4"x1 1/4" and 1"x1 1/2"

Material: Cast iron. PN-16

Nodular iron. PN-40. 350°C

Carbon steel PN-40

Stainless steel PN-40

Seal: Metal

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally. Design in accordance with "International Standard ISO 4126-1 Safety Valves".

Connection: Flange x Flange
DN1 x DN2: 25x32 to 400x500
Material: ■ Carbon steel.

PN-25/40/63/100/160. PMS-62 bar

Stainless steel

PN-25/40/63/100/160. PMS-62 bar

Seal: Metal

Connection: Flange x Flange
DN1 x DN2: 25x40 to 300x400
Material: Carbon steel.

PN-25/40/63/100/160. PMS-95 bar

Stainless steel

PN-25/40/63/100/160. PMS-95 bar

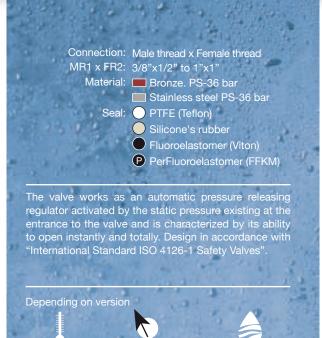
Seal: Metal

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally. Design in accordance with "International Standard ISO 4126-1 Safety Valves".

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally. Design in accordance with "International Standard ISO 4126-1 Safety Valves".

Safety EN

Full lift safety valve with spring loading. (AIT)



Mod. 695

Mod. 895 CRYOGENIC

Connection: Male thread x Female thread MR1 x FR2: 3/8"x1/2" to 1"x1"
Material: Bronze. PS-36 bar
Stainless steel PS-36 bar
Seal: PTFE (Teflon)

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally. Design in accordance with "International Standard ISO 4126-1 Safety Valves".

Mod. 995

Mod. 694 CLAMP

Connection: Male thread x Female thread MR1 x FR2: 3/8"x1/2" and 1/2"x1/2" Material: Stainless steel PS-144 bar

Seal: OPTFE (Teflon)

Connection: Flange clamp x Flange clamp

DN1 x DN2: 10 x15 to 25 x 25

Material: Stainless steel PN-16

Seal: OPTFE (Teflon)

O Silicone's rubber

Fluoroelastomer (Viton)

PerFluoroelastomer (FFKM)

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally. Design in accordance with "International Standard ISO 4126-1 Safety Valves".

Depending on version

-60°C to +200°C 36,01 bar to 144,00 bar Steam/Gases/Liquids

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally. Design in accordance with "ASME code section VIII Div.1". Materials according ASME code section II and ASTM. Connections according ISO 2852 standard.

Depending on version

0,20 bar to 16,00 bar

Steam/Gases/Liquids

Safety EN

Normal opening safety valve. (AN)

Mod. 494 Mod. 295 Mod. 395

Connection: Flange x Flange
DN1 x DN2: 25x25 to 200x200
Material: Cast iron. PN-16
Nodular iron. PN-40. 350°C
Carbon steel PN-40
Stainless steel PN-40
Seal: Metal

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open, at the first proportional to the pressure increase, and after instantly and totally. Design in accordance with "International Standard ISO 4126 -1 Safety Valves".

Connection: Male thread x Female thread R1 x R2: 1/2"x1" to 1 1/4" x 2"

Material: Bronze. PMS-25 bar

Carbon steel PMS-25 barStainless steel PMS-25 bar

Seal: PTFE (Teflon)
Silicone's rubber

Fluoroelastomer (Viton)

Conexión: Male thread x Female thread

G1xG2: 1/4" x 1" to 1 1/4" x 2"

Material: Carbon steel. PMS-25 bar

Stainless steel. PMS-25 bar

Seal: PTFE (Teflon)

Fluoroelastomer (Viton)

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open, at the first proportional to the pressure increase, and after instantly and totally. Design in accordance with "International Standard ISO 4126 -1 Safety Valves".

Depending on version

-60°C to +250°C 0,20 bar to 25,00 bar Steam/Gases/Liquids

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open, at the first proportional to the pressure increase, and after instantly and totally. Design in accordance with "International Standard ISO 4126 -1 Safety Valves".

Depending on version

-60°C to +260°C 25,10 bar to 70,00 bar Steam/Gases/Liquids

Connection: Flange x Flange DN1 x DN2: 15x25 to 32x50 Material: Bronze. PMS-25 bar Carbon steel PMS-25 bar Stainless steel PMS-25 bar

> Seal: PTFE (Teflon) Silicone's rubber

Fluoroelastomer (Viton)

The valve works as an automatic pressure

releasing regulator activated by the static

pressure existing at the entrance to the valve

and is characterized by its ability to open, at the

first proportional to the pressure increase, and

after instantly and totally. Design in accordance

with "International Standard ISO 4126 -1 Safety

PN-25 Seal: Stainless steel PN-25 O PTFE (Teflon) Silicone's rubber Fluoroelastomer (Viton)

Mixed (Bronze/Brass. - S.steel).

Connection: Male thread x Female thread

Material: Bronze/Brass. PN-16

R1 x R2: 1/4"x1/4" to 4"x4"

releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open, at the first proportional to the pressure increase, and after instantly and totally. Design in accordance with "International Standard ISO

4126 -1 Safety Valves".

Depending on version

The valve works as an automatic pressure The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open, at the first proportional to the pressure increase, and after instantly and totally. Design in accordance with "International Standard ISO 4126 -1 Safety Valves".

PN-25

PTFE (Teflon)

Silicone's rubber

Bronze/Brass. PN-16

Stainless steel PN-25

Fluoroelastomer (Viton)

Mixed (Bronze/Brass. - S.steel.).

Connection: Flange x Female thread

DN1 x R2: 8x1/4" to 100x4"

Material:

Seal:

Depending on version

Depending on version

0,20 bar to 25,00 bar

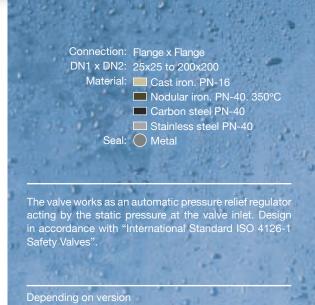
Steam/Gases/Liquids

-60°C to +250°C 0,20 bar to 25,00 bar Steam/Gases/Liquids

-60°C to +250°C 0,20 bar to 25,00 bar

Steam/Gases/Liquids

Safety EN


Progressive opening safety relief valve. (AP)

Mod. 194 Mod. 195

Connection: Female thread x Female thread do x R2: 3/4"x1 1/4" to 1"x1 1/2"

Material: Cast iron. PN-16

Nodular iron. PN-40. 350°C

Carbon steel PN-40

Stainless steel PN-40

Seal: Metal

The valve works as an automatic pressure relief regulator acting by the static pressure at the valve inlet. Design in accordance with "International Standard ISO 4126-1 Safety Valves".

Vacuum breaker safety valve

Mod. 196 Mod. 795

Connection: Flange x Flange
DN1 x DN2: 20x32 to 200x300
Material: Cast iron. PN-16

Nodular iron. PN-40. 350°C
Carbon steel PN-40

Stainless steel PN-40

Seal: Metal

Connection: Male thread x Free admission MR1 x 6ØB: 3/8"x6ØB to 1"x6ØB

Material: Brass. PN-16

Stainless steel PN-16
Seal: Silicone's rubber

Fluoroelastomer (Viton)

The valve works as an automatic pressure relief regulator acting by the static pressure at the valve inlet. Design in accordance with "International Standard ISO 4126-1 Safety Valves".

Depending on version

-60°C to +450°C

0,05 bar to 0,2 bar

Steam/Gases/Liquids

The valve acts as an automatic regulator of pressure drops and prevents the creation of a vacuum inside pressurised installations or vessels.

Depending on version

-50°C to +150°C

-0,05 bar to -0,40 bar

Safety ASME

Full lift safety valve with spring loading. (AIT)

EP

AP

ES

CP

EP

AP

ES

CP

Mod. 486 Mod. 485

Connection: Flange x Flange NPS1 x NPS2: 1"x 2" to 8"x10"

Material: Carbon steel 150 lbs and 300 lbs

■ Stainless steel 150 lbs and 300 lbs

Seal: Metal

Connection: Female thread NPT x Female thread NPT

FNPT1 x FNPT2: 3/4"x1 1/4" and 1"x1 1/2"

Material: Carbon steel 300 lbs

Stainless steel 300 lbs

Seal: Metal

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally. Design in accordance with "ASME code section VIII Div.1". Materials according ASME code section II and ASTM. Connections according ASME/ANSI B16.5 standard. Center to face dimensions according API-526.

Depending on version

20,2°F to +800°F

T

2,90 psi to 580,15 psi

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally. Design in accordance with "ASME code section VIII Div.1". Materials according ASME code section II and ASTM. Connections according ASME B1.20.1 standard.

Depending on version

-20,2°F to +800°F

00°F 2,90

2,90 psi to 580,15 psi

Steam/Gases/Liquids

AS

Mod. 685

ΑP

ΕP

Mod. 885 CRYOGENIC

AP

Connection: Male thread NPT x Female thread NPT

ES

MNPT1 x FNPT2: 3/8"x1/2" to 1"x1"

Material: Bronze. MAWP-522,14 psi

Stainless steel MAWP-522,14 psi

AS

Seal: PTFE (Teflon)

Silicone's rubber

Fluoroelastomer (Viton)

P Perfluoroelastomer (FFKM)

Connection: Male thread NPT x Female thread

MNPT1 x FNPT2: 3/8"x1/2" to 1"x1"

Material: Bronze. MAWP-522,14 psi

Stainless steel MAWP-522,14 psi

Seal: O PTFE (Teflon)

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally. Design in accordance with "ASME code section VIII Div.1". Materials according ASME code section II and ASTM. Connections according ASME B1.20.1 standard.

Depending on version

-76°F to +482°F

2,90 psi to 522,14 psi

Steam/Gases/Liquids

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally. Design in accordance with "ASME code section VIII Div.1". Materials according ASME code section II and ASTM. Connections according ASME B1.20.1 standard.

Depending on version

-320,8°F to +392°F

2,90 psi to 522,14 psi

Steam/Gases/Liquids

Safety ASME

Full lift safety valve with spring loading. (AIT)

Normal opening safety valve. (AN)

EP AP ES AS

AP

ES

Mod. 985 Mod. 285

Connection: Male thread NPT x Female thread NPT

MNPT1 x FNPT2: 3/8"x1/2" and 1/2"x1/2"

Material: Stainless steel. MAWP-2088,54 psi

Seal: OPTFE (Teflon)

Connection: Male thread NPT x Female thread NPT

NPT1 x NPT2: 1/2" x 1" to 1 1/4" x 2"

Material: ■ Carbon steel. 300 lbs

ΕP

Stainless steel. 300 lbs

Seal: OPTFE (Teflon)

Silicone's rubber

Fluoroelastomere (Viton)

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally. Design in accordance with "ASME code section VIII Div.1". Materials according ASME code section II and ASTM. Connections according ASME B1.20.1 standard.

Depending on version

1

-76°F to +392°F

1

523,58 psi to 2.088,57 psi

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally.

Depending on version

-76 °F to +500 °F

2,90 psi to 363,00 psi

Steam/Gases/Liquids

AP ΕP ES

Mod. 385

AP

EP

Mod. 286

Connection: Male thread NPT x Female thread NPT

FNPT1 x FNPT2: 1/4" x 1" to 1 1/4" x 2" Material: Carbon steel.

Stainless steel.

Seal: OPTFE (Teflon)

Connection: Flange x Flange NPS1 x NPS2: 1" x 2" to 1 1/2" x 3" Material: Carbon steel. 300 lbs

Stainless steel. 300 lbs

Seal: O PTFE (Teflon) O Silicone's rubber

Fluoroelastomer (Viton)

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to

open instantly and totally.

Depending on version

-76 °F to +500 °F 364,00 psi to 1015,00 psi

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve and is characterized by its ability to open instantly and totally.

Depending on version

-76 °F to +500 °F

2,90 psi to 363,00 psi

Steam/Gases/Liquids

Safety ASME

Progressive opening safety relief valve. (AP)

Mod. 186 Mod. 185

Connection: Female thread NPT x Female thread NPT FNPT1 x FNPT2: 3/4" x 1 1/4" to 1" x 1 1/2"

Material: Carbon steel

Stainless steel

Seal: Metal

The valve works as an automatic pressure releasing regulator activated by the static pressure existing at the entrance to the valve. Design in accordance with "International Standard ISO 4126-1 Safety Valves".

Safety ASME

Safety **EN/ASME**

Vacuum breaker safety valve

Multi-stage diffusion silencers

Mod. 785

Mod.005 EN ASME/ANSI ASME/FNPT ASME/MNPT ASME/SWothers to be agreed

Connection: Male thread NPT x Free admision

MNPT1 x 6ØB: 3/8"x6ØB to 1"x6ØB Brass. 150 lbs Material:

Stainless steel 150 lbs Seal: Silicone's rubber Fluoroelastomer (Viton)

The valve acts as an automatic regulator of pressure drops and prevents the creation of a vacuum inside pressurised installations or vessels.

Depending on version

Connection: Flange

Male thread Female thread Male thread NPT Female thread NPT SW welding end

DN: To be agreed R: To be agreed Material: Carbon steel

During the expansion process for compressible substances such as gases, steam or air, one of the main problems is noise pollution. The noise is caused by opening the valve and discharging the expanded fluid at the speed of sound. Silencers are a great way to reduce this noise, caused by discharging the valve, bringing it down to allowable levels.

They are used in places such as power, chemical and petrochemical plants to discharge safety valves, control valves, etc. in pressure lines and equipment that convey compressible substances such as steam, air, carbon dioxide, helium, methane, nitrogen, oxygen and other gases.

They achieve noise reductions of more than 50 dB without any additional acoustic absorption materials.

Depending on version

Safety **EN/ASME**

Test bench for safety valves

Controlled safety pressure relief System CSPRS

Mod.000 EN ASME/ANSI ASME/FNPT ASME/MNPT ASME/SW... others to be agreed

Mod. 004

Connection: Mechanical clamps DN: 8 to 125

Test bench for regular inspections and setting and resetting safety valves. Ideal for distributors, maintenance companies or with in-house maintenance.

It allows safety valves to be adjusted, tested and/or checked to the test pressure (setting) Pe wile cold (simulating service conditions), matching the opening pressure Ps and the closing pressure Pc, in accordance with the standard regulations.

Design in accordance with the requirements of machine directive 2006/427/EC and the pressure equipment directive (2014/68/EU).

Controlled safety pressure relief system CSPRS valves are mainly used where conventional direct-loaded spring action valves cannot guarantee the opening and closing margins that certain specific conditions of service demand.

The objective is to help the closure by means of pressure so that the valve remains completely watertight until reaching the set pressure and/or to activate the opening with pressure. Once evacuated and in keeping with a previous adjustment, to assist with closing pressure, to once again achieve closure with the desired watertightness.

This allows us to:

- Stabilise the functioning in critical applications of one or several valves.
- Improve performance, position, repeatability and operational efficiency.
- Improve the opening-closure hysteresis.
- Reduce product losses and minimise them in the case of working with several valves at staggered pressures, if conditions so permit.
- Increase the operating pressure of the system up to 99.9% of the

The control safety pressure relief system CSPRS device can be used with any safety valve available in the market.

Safety EN/ASME

Check-Filters

Disc check valve

Mod. 170 EN ASME/ANSI

Mod. 172 EN ASME/ANSI

Connection: For placing between flanges

DN: 15 to 100

Material: Bronze. PN-16

Carbon steel PN-40

Stainless steel PN-40

Seal: Metal

Disc check valve with centering ring for placing between flanges in accordance with DIN, UNE, ANSI, BS, etc. DN -15 to 100.

Face-to-face dimensions in accordance with EN-558, basic series 49.

Depending on version

Connection: For placing between flanges

DN: 125 to 300

Material: Cast iron PN-16

■ Bronze, PN-16

Carbon steel PN-40

Stainless steel PN-40

Seal: Metal

Disc check valve with centering ring for placing between flanges in accordance with DIN, UNE, ANSI, BS, etc. DN -125 to 300.

Face-to-face dimensions in accordance with EN-558, basic series 49 and 51.

Depending on version

-60°C to +400°C

40,00 bar

Steam/Gases/Liquids

Check-Filters

Piston check valve

Y filters

Mod. 179 EN ASME/FNPT ASME/SW

Mod. 090 EN ASME/ANSI

Connection: Female thread GAS

Female thread NPT

Socket welding ends SW

R: 1/4" to 2"

Material: Brass. PN-200

Carbon steel PN-250

Stainless steel PN-250

Seal: Metal

Connection: Flange x Flange

DN: 15 to 200

Material: Nodular iron, PN-16

Carbon steel PN-40

Stainless steel PN-40

Check valve with spring operated piston closure.

Depending on version

It enables the filtration and accumulation of suspended solid particles, dragged by fluids, for their subsequent removal. In this way, we protect water control and regulation equipment underneath the filter and prevent collateral damage.

Depending on version

-60°C to +400°C

40,00 bar

Steam/Gases/Liquids

Check-Filters

Steam traps-Separators

Thermodynamic

Thermodynamic steam trap

041-04 without filter

043-044 with filter

Mod. 191 EN ASME/FNPT ASME/SW

Connection: Female thread GAS Female thread NPT Socket welding ends SW

R: 1/4" to 2"

Material: Stainless steel PN-40

It enables the filtration and accumulation of suspended solid particles, dragged by fluids, for their subsequent removal. In this way, we protect water control and regulation equipment underneath the filter and prevent collateral damage.

Depending on version

Mod. 041 EN ASME/FNPT ASME/SW

Mod. 043 EN ASME/FNPT ASME/SW

Connection: Female thread GAS

Female thread NPT

Socket welding ends SW

R: 1/2" to 1"

Material: Stainless steel PMA. 63 b

Seal: Metal

Mod. 042 EN ASME/ANSI

Mod. 044 EN ASME/ANSI

DN: 15 to 25

Material: Stainless steel PMA. 63 bar

Seal: Metal

For the extraction of steam condensates.

For use in: steam piping, irons, laundries, tanks and vessels with ondensate discharge, multiple plate presses, vulcanizing autoclass, pressure reduction equipment, etc.

Steam traps-**Separators**

Mechanical

Float and thermostatic steam trap

Inverted bucket steam trap

241

243

Mod. 241 EN ASME/FNPT

Connection: Female thread GAS

Female thread NPT

Material: Cast iron. PMS-14 bar

Seal: Metal

Mod. 243 EN ASME/FNPT ASME/SW

Connection: Female thread GAS

Female thread NPT

Socket welding ends SW

R: 1/2" to 1", 1 1/2" and 2" Material: Carbon steel PMS-14 bar

Mod. 244 EN ASME/ANSI

Connection: Flange x Flange

DN: 15 to 25, 40 and 50

Material: Carbon steel PMS-14 bar

Seal: Metal

To extract saturated or super-heated medium or lowpressure steam condensates. Applicable to: steam piping, heat exchangers, plants with automatic temperature control, etc., in the chemical and petrochemical industries, etc.

Depending on version

Mod. 343 EN ASME/FNPT

Connection: Female thread GAS Female thread NPT

R: 1/2" to 1"

Material: Cast iron. PN-16

Seal: Metal

To extract saturated or super-heated low-pressure steam condensates. Applicable to: steam piping, heat exchangers, plants with automatic temperature control, etc., in the chemical and petrochemical industries, etc.

Depending on version

+220°C 16,00 bar

Thermostatics

Bimetallic steam trap

Thermostatic steam trap

543

 143
 144
 443
 444

Mod. 143 EN ASME/FNPT ASME/SW

Connection: Female thread GAS
Female thread NPT
Socket welding ends SW

R: BP 1/2" and 3/4"
MP 1/2" and 3/4"
AP 1/2" to 1"

Material: Carbon steel BP. PN-40

Carbon steel MP. PN-40

Seal: Metal

Mod. 443 EN ASME/FNPT ASME/SW

Connection: Female thread GAS
Female thread NPT
Socket welding ends SW

R: 1/4" to 1"

Material: Stainless steel PMS-22 bar

Mod. 444 EN ASME/ANSI

Seal: Metal

Carbon steel AP. PN-100

Connection: For placing between flanges

DN: 15 to 25

Material: Stainless steel PMS-22 bar

Seal: Metal

Mod. 144 EN ASME/ANSI

Connection: Flange x Flange DN: BP 15 to 25 MP 15 to 25

AP 15 and 25

Material: Carbon steel BP. PN-40

Carbon steel MP. PN-40

Carbon steel AP. PN-100

Seal: Metal

For the extraction of steam condensates. Applicable in: steam piping, heat exchangers, chemical and petrochemical industries,... etc.

Depending on version

+450°C

Steam

Mod. 543 EN ASME/FNPT

Connection: Female thread GAS Female thread NPT

R: 1/2"

Material: Stainless steel PMS-22 bar

Seal: Metal

To extract saturated or super-heated medium or low-pressure steam condensates. Applicable to: steam piping, irons, laundries, vessels with condensate discharge, cooking pots, sterilizers, heat exchangers, multiple dish presses, vulcanizing autoclaves, calenders, pressure reducing equipment, etc.

Depending on version

+250°C 22,00 bar

Steam

Steam traps-**Separators**

Ultrasonic leak detector

Steam condensate separator

Mod. 003

Mod. 944 EN ASME/ANSI

Material: Plastic ABS -Stainless stee

- To detect leaks: In condensate purgers.
- In valve seals.

Checking for wear on bearings. Solving mechanical problems in general.

Ultrasound is directional and localisable. In a noisy environment we can remove or block the distorting ultrasounds.

During preventive maintenance, we should place

the stethoscope properly and we will detect, audibly and visually, the leaks that are affecting us. We can take corrective action, safeguarding the environment, saving energy, time and consequently money.

It meets and exceeds the requirements of ASTM E1002-2005 for Leak Detection.

Connection: Flange x Flange DN: 15 to 350

Material: Carbon steel. PN-16

Carbon steel. PN-40

Seal: Metal

To remove condensate from steam lines. Applicable in: ironing machines, laundries and dry cleaners, cooking pots, textile machinery, drying cylinders, autoclaves, steam ovens, distilleries, heat exchangers, food industries, chemical laboratories, etc.

Depending on version

0 to +250°C

30.70 bar

Reducing-**Mixing**

Direct action pressure

reducing valve

Steam-water mixing valve

Mod. 513 EN ASME/FNPT

Mod. 614 EN ASME/ANSI Mod. 253 EN ASME/FNPT

Connection: Female thread GAS Female thread NPT

R: 1/2" to 1"

Material: Nodular iron. PN-25

Carbon steel PN-40

Stainless steel PN-40

Cierre: Metal

Connection: Flange x Flange DN: 25 to 50

Material: Carbon steel PN-16

Seal: Metal

Connection: Female thread

R: 1/2", 3/4,1" and 1 1/2"

0,35 to 10,50 bar

Material: Bronze. PN-16

PTFE (Teflon) Seal:

Mod. 514 EN ASME/ANSI

Connection: Flange x Flange

DN: 15 to 25

Material: Nodular iron. PN-25

Carbon steel PN-40

Stainless steel PN-40

Seal: Metal

For steam and gases. (For liquids, consult our technical department).

Suitable for application in: ironing machines, laundries and dry cleaners', cooking vats, textile machinery, drying cylinders, autoclaves, steam ovens, distilleries, heat exchangers, the food industry, chemical laboratories, etc.

Depending on version

For steam and gases. Suitable for application in: ironing machines, laundries and dry cleaners', cooking vats, textile machinery, drying cylinders, autoclaves, steam ovens, distilleries, heat exchangers, the food industry, chemical laboratories, etc.

Connection: Female thread R: 1/2"

Water gun Pl. 1

Depending on version

+187°C

Material: Bronze (coated with synthetic rubber)

Seal: Fluoroelastomer (Viton)

In installations with steam, the steam can be mixed with cold water to obtain instant hot water in the most economical way.

Can be used in packaging plants, dairies, detergent plants, slaughterhouses, meat processing plants, hospitals,... etc.

For cleaning floors, vehicles, toilets, tanks, filters,... etc.

In the manufacture of food, chemical, paper and tannery products,... etc.

-10 to +120°C

Depending on version

Depending on version

1,40 to 16,00 bar

Float valves

Buoys

Mod. 150 EN ASME/ANSI

Connection: Flange DN: 15 to 65

Stainless steel PN

Mod. 151 EN ASME/MNPT

Connection: Male thread GAS
Male thread NPT
R: 3/8" to 2 1/2"
Material: Stainless steelPN-16

Mod. 152

Material: Stainless steel

Flat:

Ø150x60. Female thread. M10 Ø150x60. Sliding (Ø8 mm. internal)

Ø200x80 and Ø250x95. Female thread. M10 Ø300x115 and Ø350x130. Female thread. M12

Cylindrical:

Ø40x50. Male thread. M4

Ø40x50. Sliding (Ø4 mm. internal)

Ø60x120. Female thread. M6. (With or without Epoxy coating) Ø60x120. Sliding (Ø6 mm. internal). (With or without Epoxy coating)

Spherical:

Ø60. Dowel Ø4,5 mm. Ø60. Female thread, M4

Ø90. Female thread. M10 Ø105. Sliding (Ø18 mm. internal)

Ø110 and Ø150. Female thread. M10

Ø200 and Ø300. Female thread. M12

Depending on version

-60°C to +200°C

Control-Regulation

Stop valve with bellow seals

Thermal and acoustic insulation textile jackets

Mod. 248 EN ASME/ANSI

Mod. 008 EN ASME/ANSI

Connection: Flange x Flange

DN: 15 to 200

Material: Nodular iron. PN-16

Carbon steel PN-40

Stainless steel PN-40

Seal: Metal

Connection: VYC thermal and acoustic insulation textile

jackets are designed and manufactured to measure for our valves, but we are able to adjust them to any other valve or installation on the market. Remember that only our original products will offer the maximum guarantee.

Material: Fibreglass with external silicone coating

Stop valve with bellow seals, maintenance-free, designed with external spindle and support guide, thus avoiding the atmospheric emissions of conventional

Depending on version

They help to reduce heat loss, protect against frost and adverse weather conditions, noise attenuation and work as a preventive measure in work-place safety, etc.

Depending on version

Control-Regulation

Siphon tube. For pressure gauges

Needle valve

Mod. 011 EN ASME/MNPT

Mod. 147 EN ASME/FNPT ASME/SW

Connection: Male thread GAS

Male thread NPT

R: 1/4" to 1/2"

Material: Carbon steel B40

Stainless steel CL300

Sleeve and nuts

Connection: Female thread GAS

Female thread NPT

R: 1/4" to 1/2"

Material: Brass.

Stainless steel

Prevents breakdowns and misalignments in pressure

Absorbs abrupt pressure changes or water hammer which cause malfunctioning pressure gauges.

Isolates the pressure gauge from extreme temperatures by creating thermal isolation space.

If working with steam, ensure that the pressure gauge

is activated by water condensation and not by steam.

Connection: Female thread GAS Female thread NPT Socket welding ends SW

R: 1/4" to 2"

Material: Brass. PN-200

■ Carbon steel PN-250 Stainless steel PN-250

Seal: Metal

For liquids, gases and steam.

For use in hydraulic, pneumatic, heating and steam systems, chemical and food industries, etc.

Depending on version

-60°C +400°C

Control-Regulation

Bleeding for steam boilers

Blowdown valve for bleeding dirt and sludge

For steam boilers

Mod. 460 EN ASME/ANSI

Mod. 660 EN ASME/ANSI

Connection: Flange x Flange

DN: 25 to 50

Material: Carbon steel PN-40

The water in the boiler contains salts, which are built up by the continuous evaporation. If these salts are not eliminated, bubbles and foam are formed when the density of the water increased.

To prevent these lime deposits forming, the water supply must be suitably treated, with the result that certain salts are changed producing impurities which form sludge and encrusted deposits which then adhere to the sides or the bottom of the boiler and to the combustion tubes, together with particles of dirt, remains of electrodes, carbonic acid, oxygen, etc. This leads to a high level of

- -Destroy the metal plate of the boiler, causing high maintenance costs.
- Produce thermic voltages, causing cracks in the metal plate and soldering cord.
 -Notably slow down thermic transmission, meaning an
- unnecessary and excessive consumption of fuel.

Connection: Flange x Flange DN: 20 to 50

Material: Carbon steel PN-40

Seal: Metal

The water in the boiler contains salts, which are built up by the continuous evaporation. If these salts are not eliminated, bubbles and foam are formed when the density of the water increased.

To prevent these lime deposits forming, the water supply must be suitably treated, with the result that certain salts are changed producing impurities which form sludge and encrusted deposits which then adhere to the sides or the bottom of the boiler and to the combustion tubes, together with particles of dirt, remains of electrodes, carbonic acid, oxygen, etc. This leads to a high level of rust which may:

- -Destroy the metal plate of the boiler, causing high maintenance costs.
- -Produce thermic voltages, causing cracks in the metal plate and soldering cord.
- -Notably slow down thermic transmission, meaning an unnecessary and excessive consumption of fuel.

Depending on version

40,00 bar

Steam/Liquids

Bleeding for steam boilers

Blowdown valve for automatic bleeding

dirt and sludge For steam boilers

Continuous desalting valve

For steam boilers

MP-2

Mod. 660-A EN ASME/ANSI

Connection: Flange x Flange

DN: 20 to 50

Material: Carbon steel PN-40

Seal: Metal

Programmable control for automatic bleeding of dirt and sludge MP-2

Connection: Air inlet 1/8"

Control and discharge tube Ø6/4 mm.

Tension: 220 V.A.C. ±10% 50/60 Hz.

The water in the boiler contains salts, which are built up by the continuous evaporation. If these salts are not eliminated, bubbles and foam are formed when the density of the water increased.

To prevent these lime deposits forming, the water supply must be suitably treated, with the result that certain salts are changed producing impurities which form sludge and encrusted deposits which then adhere to the sides or the bottom of the boiler and to the combustion tubes, together with particles of dirt, remains of electrodes, carbonic acid, oxygen, etc. This leads to a high level of rust which may:

- of rust which may:
 -Destroy the metal plate of the boiler, causing high maintenance costs.
- -Produce thermic voltages, causing cracks in the metal plate and soldering cord.
- -Notably slow down thermic transmission, meaning an unnecessary and excessive consumption of fuel.

Depending on version

Mod. 560 EN ASME/ANSI

Connection: Flange x Flange

DN: 15 to 25

Material: Carbon steel PN-40

Seal: Metal

The continuous desalting valve is used to empty an adjustable quantity of water from the steam boiler, removing:

- Organic matter and mineral salts in solution. (Calcium, magnesium, sodium, potassium, iron, bicarbonate ions, chlorides, sulphates, nitrates, ...etc.).
- Solid materials in suspension. (Sand, clay, metal residues, rock residues, organic matter, ...etc.).

The continuous bleeding process prevents:

- Damage caused by erosion and perforation, entailing the following high costs:
 - Direct: Replacement or repair of materials.
 - Indirect: Stoppages, product losses, ...etc.
- Danger of boiler explosion.

And reduces:

- Incrustations and sediments caused by precipitation of calcium and magnesium salts, which obstruct thermic transmission and which cause unnecessary and excessive fuel consumption.
- Foam formation caused by excessive saline concentration, with its corresponding drag.

Depending on version

+300°C

Steam/Liquids

Automatic continuous desalting valve

For steam boilers

Samples water-cooler

For steam boilers

560-A EC-1 RD-1 ARD-1

Mod.560-A EN ASME/ANSI

Mod.560 DRM-1 EN ASME/FNPT

Connection: Flange x Flange

DN: 15 to 25

Material: Carbon steel PN-40

Seal: Metal

Servomotor voltage: 220 V.A.C. ±10% 50/60 Hz.

Desalting controller With assembly cupboard, ARD-1

Without assembly cupboard. RD-1

Voltage: 220 V.A.C. ±10% 50/60 Hz.

Conductivity electrode EC1

Connection: Male thread

Material: TFE (Teflon)-Stainless steel

PMS-32 bar

Electrode connection collector

Connection: Flange

DN: 20

Material: ■ Carbon steel PN-40

Blow off valve: Mod. 999 de 1/2" with simple joint plug

The conductivity electrode EC-1, the desalting controller RD-1 and the continuous desalting valve with servomotor allow the automatic desalting process of boiler water which eliminates:

- Organic matter and mineral salts in solution. (Calcium, magnesium, sodium, potassium, iron, bicarbonate ions, chlorides, sulphates, nitrates, ...etc.).
- Solid materials in suspension. (Sand, clay, metal residues, rock residues, organic matter, ...etc.).

The continuous bleeding process prevents:

- Damage caused by erosion and perforation, entailing the following high costs:
 - Direct: Replacement or repair of materials.
 - Indirect: Stoppages, product losses, ...etc.

- Danger of boiler explosion.

And reduces:

- Incrustations and sediments caused by precipitation of calcium and magnesium salts, which obstruct thermic transmission and which cause unnecessary and excessive fuel consumption.
- Foam formation caused by excessive saline concentration, with its corresponding

This combination of measuring, comparison and control ensures minimum water loss and thus gives considerate energy savings.

Depending on version

Connection: Sampling circuit: Tube Ø6/8mm. Refrigeration circuit: Female thread 1/2"

Material: Stainless steel.

Sampling circuit. PMS-140 bar Refrigeration circuit. PMS-10 bar

Efficient monitoring of the purging of salts, dirt and sludge in a steam boiler requires regular analysis of the water in order to verify that its parameters are within the ideal levels of salinity and alkalinity demanded by law. All the Continuous desalting valve (Mod. 560 and 560-A) are provided with taps for obtaining samples. As the water is extracted continuously 30 ÷ 50 mm. below the minimum level, the collection level is ideal and does not

Direct sampling is incorrect:

- Losses by expansion increase the density of the water and falsify results.

interfere with the control and level regulation devices.

- There is an obvious physical risk involved.

The basic premise for conducting analyses correctly is to bring the samples from the tap of the Continuous desalting valve to the Samples water-cooled DRM-1, and bring them down to between 24 ÷ 26°C.

Depending on version

Automatic level controller

Sliding buoy type automatic level controller

Buoy type automatic level controller

290 291 262

CC

CM

SC

Mod. 290

Material: Stainless steel

Standard level fluctuation: 495 mm.

Buoy: Ø150x60 sliding

Maximum n° of switches: 1

Mod. 076 EN ASME/ANSI

Connection: Bracket with 2 screws M.8 x

Connection: Flange DN: 25

Connection (SC): Flange with 4 screws M. 16x40

Material: Cast iron, PN-16

Stainless steel PN-16 (SC)

Standard level fluctuation: 120 mm.

Buoy: Ø60x120

Maximum no of switches: 10

Distance between

centres of flanges: 190 or 250 mm.

Viewer (CM): F=Front. D=Right. I=Left

Blow off valve: Mod. 999 1/2" with simple joint plug

Mod. 291 EN ASME/MNPT

Male thread NPT

R: 2 1/2"

Material: Stainless steel
Standard level fluctuation: 3.000 mm.

Maximum level fluctuation: 30.000 mm.

Buoy: Ø60x120 sliding

Maximum n° of switches: 1

This device guarantees automatic, safe and reliable control, and signalling of the level of liquids in: wells, tanks, cisterns,

This device guarantees automatic, safe and reliable control, regulation and signalling of the level of liquids in: steam boilers, pressurised vessels, pre heaters, processes, etc.

Depending on version

16,00 bar

Mod. 262

Connection: Voltage: M.4 220 V.A.C

To be meant for Mod. 290, 291 and 076

Electrode based electronic level controller For steam boilers Modulating electrode based electronic level controller For steam boilers

Mod. 176 EN ASME/MNPT

Mod. 276 EN ASME/MNPT

Level controller. RN-1
Minimum level safety controller. RS-1

Voltage: 220 V.A.C. ±10% 50/60 Hz.

Level electrode. EN-1
Minimum level
safety electrode. ES-1

Connection: Male thread

R: 1"

Material: TFE (Teflon)- Stainless steel

PMS-32 bar

Measuring standard length: 700 mm

Electrode connection colector

Connection: Flange

DN: 25

Material: Carbon steel PN-40

Maximum no of electrodes: 1 or 3

Distance between centres of flanges: 190 or 250 mm.

Blow off valve: Mod. 999 1/2" with simple joint plug

This device guarantees a safe and reliable control, regulation and electronic signalling of the level of electrically conducting liquids in: steam and hot water boilers, autoclaves, pre heaters, pressure vessels, feed water and condensates tanks, processes, etc.

Depending on version

Modulating level controller. RAC-1. RAC-2. RAC-3

Tension: 220 V.A.C. ±10% 50/60 Hz.

Modulating level electrode.

EAC-1

Connection: Male thread

R: 1"

Material: The PTFE (Teflon)-

Stainless steel PMS-32 bar

Measuring standard length: 300 to 1.500 mm.

Electrode connection colector

Connection: Flange

DN: 25

Material: Carbon steel PN-40

Maximum n° of electrodes: 1 or 3 Distance between centres of flanges: 190 ó 250 mm.

Blow off valve: Mod. 999 1/2" with simple joint plug

This device, when combined with a motorised valve, ensures the continuous control and display of the level, with a high and low level alarm for: steam and hot water boilers, autoclaves, pre-heaters, pressured vessels, condensation and feed water tanks, processing, etc. Applicable to steam boilers in accordance with TRD-602, TRD-604 (24/72 hours) and EN-12953 Part 6 (24 hours).

Depending on version

+238°C

32.00 bar

Steam/Liquids

Window sight glasses-**Level indicators**

Window sight glasses

Transparency round glasses For window sight glasses

Model 366

Mod. 265 EN ASME/FNPT ASME/SW

Connection: Female thread GAS Female thread NPT Socket welding ends SW R: 1/2" to 1"

Material: Carbon steel PN-40 Stainless steel PN-40

Mod. 365 EN ASME/FNPT ASME/SW

Connection: Female thread GAS Female thread NPT

Socket welding ends SW

R: 1/2" to 2"

Material: Carbon steel PN-40

Stainless steel PN-40

Mod. 366 EN ASME/ANSI

Connection: Flange x Flange

DN: 15 to 200

Material: Carbon steel PN-16. PN-40

☐ Stainless steel PN-40

To verify the flow, direction and condition of liquid in a section of piping. It helps detect blockages in valves, filters and other line equipment In particular, it enables verification of correct operation of the condensate traps, ensuring that there are no steam leaks, with the cost this would entail. It also enables observation of a product's viscosity, turbidity and, in particular, its colour in the different phases of its production process.

Applicable to: piping conveying liquids, steam and condensates, among others, in any type of industry: chemical, petrochemical, pharmaceutical food and more.

Depending on version

Mod. 006

Type: Transparency 45x10

63x10

63x15

80x12

80x20

100x15

100x25

125x20

125x30

150x25

150x30

175x25

175x30

200x30

250x30

Material: Borosilicate

Graphite (Joints)

For visual checking of the level of liquids in all types of vessel, including those under pressure, in special thermal and chemical conditions. Also for checking processes.

The quality of the sight glass satisfies the most demanding safety standards and industry guarantees in general.

Depending on version

Round-dowel level indicator

Square-dowel level indicator

Mod.166-ER EN ASME/ANSI Round-dowel level indicator box

Connection: Round-dowel Ø 20 mm.

Box no: 0 al X

Material: Carbon steel PN-16. PN-40

Stainless steel PN-40

For use in boilers, receivers, cisterns, reservoirs, ...etc., to control the level of liquids, gases and steam.

A multiple-slot poly prismatic viewer allows the level to be optically read, clearly differentiating liquid and gas phases from liquid ones.

Depending on version

-60°C to +400°C

40,00 bar

Steam/Gases/Liquids

Mod.166-EC EN ASME/ANSI Square-dowel level indicator box

Connection: Square-dowel □18 mm.

Box no: 0 al X

Material: Carbon steel PN-16. PN-40

Stainless steel PN-40

Purge tap: Mod. 999 3/8" with simple joint plug

For use in boilers, receivers, cisterns, reservoirs, ...etc., to control the level of liquids, gases and steam.

A multiple-slot poly prismatic viewer allows the level to be optically read, clearly differentiating liquid and gas phases from liquid ones.

Depending on version

-60°C to +400°C

40,00 bar

Steam/Gases/Liquids

Mod.666 EN ASME/ANSI

Level gauges

Connection: Flange DN: 20 and 25

Material: Carbon steel PN-16

Carbon steel PN-40

Stainless steel PN-40

Seal: Metal

Blow off valve: Mod. 999 3/8" with simple joint plug

Mod.466 EN ASME/ANSI Level gauges

Connection: Flange DN: 20 and 25

Material: Carbon steel PN-16

■ Carbon steel PN-40

Stainless steel PN-40

Seal: Metal

Window sight glasses-**Level indicators**

Reflection and transparency glasses

For level indicator box

Mica shield

For level indicator box

Mod. 066

Mod. 066-PM

Type reflection: A 5 prisms 0 to IX

B 5 prisms 0 to IX

H 5 prisms 0 to IX

Type transparency: A V to IX

B V to IX

H V to IX

Material: Borosilicate

Klingerit cardboard type (Joint)

Graphite (Joint)

For visual checking of the level of liquids in all types of vessel, including those under pressure, in special thermal and chemical conditions. Also for checking processes.

The quality of the sight glass satisfies the most demanding safety standards and industry guarantees in general.

Depending on version

B/H I to X

Type: A

Material: Natural muscovite mica

I to X

In combination with transparent glasses the life of these is increased when working at high pressures and temperatures.

Also, they are protected from erosion, which results from the effects of the corrosive chemical components, alkaline solutions, boiler water, steam, caustic products, hydrofluoric acids, hot and concentrated phosphoric acids, sodium and potassium hydroxides and other contaminating, viscous or corrosive

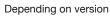
Applicable in level indicators for electrical generation plants, thermal power plants, petroleum refineries, petrochemical plants, pressure vessels, fertilizers, sugar refining plants, paper mills,... etc..

Depending on version

392,00 bar

Steam/Gases/Liquids

Blowoff valve


Mod. 999 EN ASME/FNPT

Connection: Female thread x Female thread

R: 3/8" and 1/2"

Material: Stainless steel PMS-56 bar

Seal: PTFE (Teflon)-Metal

-60°C to +260°C

56,00 bar

Steam/Gases/Liquids

VYC

